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ABSTRACT

Most of the volcanic fields that formed during the past40 Ma in Arizona can be classified into five petrologic groups: (1) lamprophyre
fields, (2) latite fields, (3) basalt-dominated fields, (4) bimodal (basali-rhyolite) fields, and (5) andesite-thyolite-dominated fields.
Lamprophyres were erupted on the Colorado Plateau over two separate periods of volcanism. During an early period, 42-25 Ma, potassic
kimberlitic microbreccias were emplaced in the interior of the Colorado Plateau. At a later period, 8-4 Ma, lamprophyric volcanism
produced sodic monchiquites closer to the margin of the plateau. Potassic latites were erupted in the Transition Zone between the Colorado
Plateau and Basin and Range provinees coeval with the early period of volcanism on the Colorade Plateau, Following the early episode
of lamprophyric and latitic volcanism, andesite-rhyolite-dominated volcanism began in the Basin and Range province and moved into
the Transition Zone, Basalt-dominated and bimodal basalt-rhyolite activity followed this style of volcanism.

Basalt-dominant volcanism resulted in the emplacement of predominantly alkalic basalt lavas but also smali amounts of tholeiitic basalt,
andesite, dacite, trachyte, and rhyolite. Bimodal activity produced basaltic and rhyolitic lavas but few intermediate-composition rocks.
Andesite-thyolite-dominated volcanism resulted in the emplacement of thick sequences of mostly calc-alkalic intermediate- to silicic-
composition lavas and ash flows in the Basin and Range province and along the margins of the Transition Zone.

Many of the mafic and some of the intermediate-composition volcanic rocks in Arizona contain ultramafic and mafic xenoliths and
a variety of megacrysts. The xenoliths include peridotite, pyroxenite, amphiboiite, gabbro, eclogite, garnetite, and granulite of mantle,
lower crustal, and cumulate origin. The megacrysts include clinopyroxene, plagioclase, amphibole, orthopyroxene, olivine, and spinel.

The origin of volcanic rocks in Arizona is the subject of many ongoing and recent petrologic studies. Basalts are ultimately derived
from upper mantle sources that in many places appear to have been enriched in incompatible clements during upper mantle
metasomatism. Most basalts underwent fractional crystallization, and some assimilated small amounts of crustal material on their way
to the surface. Intermediate-composition rocks are the products of fractional crystallization and crustal assitilation. Most of the silicic
rocks appear to be crustal melts. The large-volume silicic units record open-system magmatic processes involving fractional
crystallization, wall-rock assimilation, and magma mixing.

INTRODUCTION

Post-Laramide volcanic rocks are widely exposed in
Arizona and form the dominant geomorphic landforms in
many areas. The aim of this paper is to present available
petrographic, geochemical, and petrological data for
volcanic rocks that erupted in Arizona and northern
Mexico over the past 40 million years. First, we describe the
petrography, chemistry, and field relationships of these
volcanic rocks in Arizona to show the diversity of rock types
and volcanic associations. We present geochemical plots of
more than 3,500 major-element and approximately 500
trace-clement whole-rock analyses. These plots are used to
characterize the composition of post-Laramide volcanic
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rocks in Arizona. The data come from our ongoing
investigations of volcanic rocks in various parts of Arizona
and from published reports and from unpublished data of
colleagues. The data are of different quality and abundance.
Much of southern Arizona has poor geochemical data,
especially trace-element and isotopic data.

Second, we address the origin of the different rock types
and the volcanic fields that they form. In attempting to
achicve this goal we point out that many of the volcanic
rocks in the region have not been studied in sufficient detail
yet to allow their source regions to be satisfactorily
characterized or for their cvolutionary histories to be
elucidated.
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Finally, we present available geochronologic data in an
attempt to define migration patterns of volcanism. The
patterns allow us to improve our understanding of the
effects of global tectonism on crustal and mantle evolution
in this part of North America. Many parts of the region have
only limited geochronologic data, and some of the older
dates are suspect because of metasomatic alteration.

Post-Laramide volcanic rocks occur in each of the three
tectonic provinces that make up Arizona: (1) the Colorado
Plateau; (2} Basin and Range province, and (3) Transition
Zone (fig. 1). The Colorado Plateau is characterized by
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Figure 1. Map showing location of selected post-Laramidé voleanic fields
of Arizona and of northern Sonora, Mexico. Physiographic bounda-
ries after Peirce (1986). Volcanic fields are: 1. Hopi Buttes; 2. Navajo;
3. Sullivan Buttes; 4. Camp Creek; 5. Reno Pass; 6, Turkey Canyon;
7. Western Grand Canyen; 8. San Carlos; 9. San Bernardino; 10. Senti-
ne} Plains; 11. San Francisco; 12. Springerville; 13. White Mountains;
14, Mormon Mountain; 15. Hackberry Mountain; 16. Black Hills;
[7. Pinacate; 18. Mount Floyd; 19, Kaiser Spring; 20. Castaneda Hills:
21, Mount Hope; 22. Plomosa Mountains; 23. Mohon Mountains;
24. Aquarius Mountains; 25. Superstition-Goldfield Mountains; 26. Black
Mountains; 27, Hoover Dam; 28. Blue Range; 29. Chiricahua Mountains;
30. Galiuro Mountains; 31. Roskruge Mountains; 32, Castle Dome-Kofa
Mountains; 33. Vulture Mountains; 34. McLendon Voleano; 35, Whitfock
Mountains; 36, Growler Mountains; 37. Castle Hot Springs; 38. Mohave
Mountains; 39. Big Horn Mountains; 40. Cerbat Mountains; 41. Martin
Mountain; 42. Trigo Mountains. (Xenolith and megacryst localities
indicated by stars.)

relatively flat lying Paleozoic and Mesozoic sedimentary
shelf rocks that rest on Precambrian basement. The crust
is approximately 40 km thick beneath the plateau (Warren,
1969). The Transition Zone is a mountainous region
between the Basin and Range and Colorado Plateau
provinges; it has relatively few deep sedimentary basins and
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is undertain by crust of lesser thickness than that under the
plateau. The Basin and Range province is composed of
alternating linear mountain ranges and deep sedimentary
basins and is underlain by a relatively thin crust about 20
km thick. The major structures in the Basin and Range
province include normal faults, detachment faults,
metamorphic core complexes, and strike-slip faults
(Crittenden and others, 1980; Suneson and Lucchitta,
1983). The pervasive structural disruption of the region
makes it difficult to correlate the volcanic units across
basins and adjacent ranges.

Most post-Laramide volcanic ficlds in Arizona can be
assigned to one of five petrologic groups: (1) lamprophyre
fields; (2) latite fields; (3) basalt-dominated fields; (4)
bimodal (basalt and rhyolite)} fields; and (5) andesite-
rhyolite-dominated fields. Table 1 lists the volcanic fields
that have been characterized on the basis of geologic field
work and geochemical data and provides supplementary
information relating to volcanic rock associations, post-
emplacement metasomatic alteration, and ages of the rocks.
The assignments m some cases are preliminary because
detailed petrologic work has not been completed. This is
especially true for many volcanic fields in southern Arizona.
Also, in some areas the styles of volcanism and the resulting
rock associations changed through time. For example, we
classify the Superstition Mountains as an andesite-rhyolite
field, but during a part of its history the volcanism was
bimodal (basalt-rhyolite}.

Relations between tectonic setting and the composition of
volcanic rocks in Arizona are beginning to be unraveled.
Large lamprophyre fields occur on the Colorado Plateau;
however, lamprophyric dikes also occur in the Basin and
Range province (Williams, 1936; Hack, 1942; Cooper, 1973;
Haxel and others, 1980; Wright and Haxel, 1982). Latite
fields are restricted to the Transition Zone (Tyner, 1984;
Esperanca, 1984; Arncy and others, 1985). Basalt-
dominated fields occur on the Colorado Plateau, in the
Transition Zone, and in the southern Basin and Range.
Bimodal fields occur in the western part of the state in all
three provinces. Andesite-rhyolite-dominated fields occur
mostly in the Basin and Range province but overlap into the
Transition Zone.

We limit cur discussion here to volcanic rocks less than
about 40 Ma. Geochronologic data for this paper are based
mainly on the compilation of age data recently published by
Reynolds and his coworkers at the Arizona Geological
Survey (Reynolds and others, 1987). This compilation
contains all the high-guality K-Ar analyses published
through 1987. Obviously, future geochronologic data may
extend the age ranges of individual volcanic fields.

Petrographic and geochemical data used in the assignment
of volcanic fields to the five petrologic groups come from a
variety of sources (table 2). The interested reader is advised
to consult these references for additional discussion of rocks
in the different areas and for analytical techniques. The
quality of geochemical data from the literature may vary
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Table 1. Volcanic fields of Arizona and northern Sonora, Mexico, according to petrologic type and physiographic province. Metasomatism refers to
deuteric alteration of rocks. Numbers are keyed to figure 1. Slash under age indicates age break in the data that may indicate hiatus in voleanic
activity.
Field no. Physiographic province Rock types and comments Age
and name (Ma)
Lamprophyre fields
1. Hopi Buttes Colorado Plateau Sodic alkalic series 8-4
2. Navajo Colorado Plateau Potassic and sodie alkatic series 42-25
Latite fields

3. Sullivan Buttes Transition Zone Potassic latite 2721

4. Camp Creek Transition Zone Potassic latite

5. Reno Pass Transition Zone Potassic Latite

6. Turkey Canyon Transition Zone Potassic latite 22

Basalt fields (without differentiated rocks)

7. Western Grand Canyon Colorado Plateau Alkalic series 9-0.01

8. San Carlos Transition Zone Alkalic series to mugearite 7-0.5

9. San Bernardino Basin and Range Alkalic series 1-0.3
10. Sentinel Plains Basin and Range 6-1

_ Basalf fields (with differentiated rocks)
11. San Francisco Colorado Plateaun Subalkalic and alkalic series to rhyolite and trachyte 6-0.05
12. Springerville Colorado Plateau Mostly alkalic series, small amount of tholeiitic basalt to benmoreite 9-0.3
13. White Mountains Colorado Plateau Alkalic series, basalt to trachyte 9-2
14, Mormon Mountain Colorado Plateau- Alkalic and tholeiitic basalt series to rhyolite 14-3
Transition Zone
15. Hackberry Mountain Transition Zone Alkalic and subalkalic basalt series to rhyolite 143
16. Black Hiils Transition Zone Alkalic and tholeiitic basalt, and small amounts of andesite and rhyolite 15-11
17. Pinacate Basin and Range Alkalic series to trachyte; subalkalic series to dacite 18-5/2-0.1
Bimodal (basalt-rhyolite) fields
18. Mount Floyd Colorado Plateau- Basalt and low- and high- silica rhyolite i0-2
. Transition Zone
19. Kaiser Spring ' Transition Zone Basalt and low- and high- silica rhyolite 228
20, Castaneda Hills Basin and Range Basalt and low- and high-silica rhyolite; metasomatism apparent 19-5
21. Mount Hope Transition Zone Basalt to andesite and low- and high-silica rhyolite 13-5
22. Plomosa Mountains Basin and Range Basalt and rhyolite; metasomatism apparent 25-17
Andesite-rhyolite-dominated fields
23, Mohon Mountains Transition Zone Alkalic and subalkalic series to dacite 22-21
24. Aquarius Mountains Transition Zone Alkalic and subalkalic series to rhyolite 25-18
25. Superstition-Goldfield Transition Zone Basalt to rhyolite; probable metasomatism 30-14
Mountains
26. Black Mountains Basin and Range Basalt to rhyolite 23-15
27, .Hoover Dam Basin and Range Basalt to dacite 13-3
28. Blue Range Transition Zone Basaltic andesite to rhyolite
29, Chiricahua Mountains Basin and Range Basalt to rhyolite; metasomatism apparent 33-17/0.9
30. Galiuro Mountains Basin and Range Andesite to rhyolite; " 34-23/8
31. Roskruge Mountains Basin and Range Basaltic andesite to rhyolite 26-10
32. Castle Pome-Kofa Basin and Range Andesite to rhyolite; metasomatism apparent 25-18
Mountains
33. Vuiture Mountains Basin and Range Metasomatism apparent 26-13
34, McLendon volcano Basin and Range Basalt to rhyolite
35. Whitlock Mountains Basin and Range Andesite to rhyolite 29-16
36. Growler Mountaing - Basin and Range Basalt to rhyolite 24-14
37. Big Horn Mountains Basin and Range Basalt to rhyolite 21-15
Unclasstfied fields

38. Castle Hot Springs Transition Zone Basalt to rhyolite 20-16
39. Mohave Mountains Basin and Range Basalt to rhyolite; metasomatism apparent
40. Cerbat Mountains Basin and Range Basalt to rhyolite and Peach Springs Tuff >17
41, Martin Mountain Transition Zone Basalt to rhyolite 13
42. Trigo Mountains Basin and Range Basait to rhyolite 39-20

widely, but we consider it important to show all available

data for comparative purposes. We have indicated in table
1 those volcanic suites it which metasomatism has been
demonstrated. Certain elements, such as Rb, may be
especially susceptible to post-emplacement metasomatism
and alteration. Additionally, certain mineral phases may
concentrate specific elements preferentially to others. For

example, Sr is sequestered by plagioclase, and Cr is
preferentially concentrated into clinopyroxene and olivine,

Studies of volcanic rocks of Arizona have been conducted
by many workers over the past 85 years. The present
authors have conducted field and petrologic studies of
volcanic rocks over much of the state. Nealey has done
detailed mapping in the Mount Floyd, Mormon Mountain,
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Table 2. Selected sources of petrographic, geochemical, and geochronologic data,
Field Source Field ~ Source
Lamprophyre fields .
Hopi Buttes Nicholis, 1969; Powell and Bell, 1970, Plomosa Mountains Mitter, 1970; Miiler and McKee, 1971;
Lewis, 1973; Suda and others, 1982; Wen- Davis, 1985.
rich and Mascarenas, 1982; Alibert and Andesite-rhyolite fields
others, 1986; M. Shafiqullah and P.E. Mohon Mountains Nealey and others, 1986; L.D. Nealey,
Damon, Univ. of Arizona, unpub, data. AW, Ward, and A.C. Robinson, U.S.
Navajo Nicholls, 1969; Roden, 1981; Ehrenberg, Geological Survey, unpub, data.

Sullivan Buttes
Camp Creek
Reno Pass

Turkey Canyon

Western Grand Canyon
San Carlos

San Bernardino
(Geronimo)

Sentinel Plains

San Francisco

Springerville

White Mountains
Mormon Mountain
Hackberry Mountain
Black Hills

Pinacate

Mount Floyd

Kaiser Spring

Castaneda Hills

Mount Hope

1978; Rogers and others, 1982; Thompson
and others, 1984; Alibert and others, 1986
Laughlin and others, 1986.

Latite fields
Arculus and Smith, 1979; Tyner, 1974 and
1984,
Esperanca, 1984; Esperanca and Holloway,
1986.
L.D. Nealey, U.5. Geological Survey,
unpub. data.
Arney and others, 1985; L.D, Nealey and
B.H. Carlos, U.S. Geological Survey and
Los Alamos National Lab,, respectively,
unpub. data.

Basailt fields
Best and Brimhall, 1974; Leeman, 1974;
Alibert and others, 1986,
Leeman, 1970; Stueber and lkramuddin,
1974; Frey and Prinz, 1978; Caporuscio, '
1980,
Lynch, 1972; Evans and Nash, 1979; Men-
zies and others, [983; Arculus and others,
1977,
L.D. Nealey, U.S. Geological Survey,
unpub. data.
Alibert and others, 1986; Brookins and
Moore, 1975; Moore and Wolfe, 1987;
Newhall and others, 1987, Ulrich and Bai-
ley, [987; Wenrich-Verbeek, 1975 and 1979,
Wolfe and others, 1987; M.A. Lanphere,
U.S. Gecelogical Survey, unpub. data;
Pushkar and Stoeser, 1975; Stueber and
Tkramuddin, 1974.
l.eeman, 1970; Condit, 1984; L.S.
Crumpler and J. Aubele, U.S. Geologicat
Swurvey, unpub. data,
L.D. Nealey U.S. Geological Survey,
unpub. data.
Gust, 1978; Gust and Arculus, 1986; L.D,
Nealey, U.S. Geological Survey, unpub.
data.
Scott, 1970; Lewis, 1983,
Wittke, 1984; L.D. Nealey, U.S. Geological
Survey, unpub. data.
Donnelly, 1974; Gutmann, i979; Lynch,
1981.

Bimodal fields -
Nealey, 1980; Bush, 1986; A, Kisiel, State
University of New York at Buffale, unpub.
data; L.D. Nealey, U.S. Geologicat Survey,
unpub. data.

Moyer, 1986; T.C. Moyer and Sonia Esper-
anca, Vanderbilt Univ. and Carnegie knst.
of Wash., respectively, unpub. daia; 1.5,
Beard, Ivo Lucchitta, and L.D. Nealey,
U.S. Geological Survey, unpub. data.
Suneson and Luechitta, 1983; L.D. Nealey
and lvo Lucchitta, U.S. Geological Survey,
unpub. data.

Simmons, 1986; L.D. Nealey and A.W.

Ward, U.S. Geological Survey, unpub,
data,

Arney and others, 1985; L.S. Beard and

L.D, Nealey, U.8. Geological Survey,

unpub. data.

Peterson, 1961; Malone, 1962; Fodor, 1969;

Stuckless, 1969; Stuckless and ’Neil,

1973; Suneson, 1976; Hillier, 1978; Isagho-

lian, 1983; Rettenmaier, 1984; Prowell,

1984; Kilbey, 1986; M.F. Sheridan, Arizona

State University, unpub. data; L.D. Nealey,

U.S. Geological Survey, unpub. data.

Thorson, 1971,

Scott and others, 1971; Anderson, 1978;

Basu, 1978; Alibert and others, 1986; E.I. .

Smith, Univ. of Nevada, Las Vegas, unpub.

data; Mills, 1985,

Blue Range Ratté and others, 1969; Wahi, 1980,

Chiricahua Mountains Latta, 1983; Tsuji, 1984; Bryan, 1988; H.
Drewes, W.E. Brooks, U.S. Geological
Survey, unpub, data.

Galiuro Mountains Krieger, 1979.

Roskruge Mountains Bikerman, [967; Eastwood, 1970.

Castle Dome-Kofa Mtns. Gutmann, 1982; Puchalski, 1985; Gru-

bensky, 1987,

Rehrig and others, 1980,

Brooks, 1985a.

Richter and others, 1981; Walker and

Richter, 1988; R.J. Waiker Oregon State -

University, unpub. data.

Gray and others, 1985,

Capps and others, 1986,

Other areas-
Ward, 1977, Satkin, 1981,
LE. Nielson, U.S. Geological Survey, -
unpub. data.
Arney and others, 1985; Buesch and Valen—
tine, 1986; L.D. Nealcy, U.8. Geological -
Survey, unpub. data.
L.D. Nealey and C.M. Cenway, U.S. Geo-
logical Survey, unpub. data.
Weaver, 1982; W.E. Brooks, U.S. Geologi-
cal Survey, unpub. data,

Aguarius Mountains

Superstition-
Goldfield Mits.

Black Mountains
Hoover Dam

Vulture Mountaing
Mclendon Volcano
Whitlock Mountains

Growler Mountains
Big Horn Mountains

Castle Hot Springs
Mohave Mountains

Cerbat Mountains

Martin Mountain

Trigo Mountains

" and Mohon Mountains fields and reconnaissance work in

the Castaneda Hills, Aquarius Mountains, Black Hills,
Cerbat Mountains, Suflivan Buttes, Hopi Buties, San
Francisco, Reno Pass, and Hoover Pam fields, He is also
involved in geochemical studies of volcanic rocks from
other parts of the state. Sheridan has done considerable
field work in the Superstition-Goldfield Mountains, San
Francisco, and Pinacate fields and has supervised student
research in the Camp Creek, San Carlos, White Mountains,
Kaiser Spring, and Castle Hot Springs volcanic fields. He
has done reconnaissance work in the Hopi Buttes, Navajo,
Western Grand Canyon, Chiricahua, and Big Horn
Mountains fields.
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The amount of description or discussion given to volcanic
fields in this chapter varies. Fields that the authors have
studied and those that have been well described in the
literature are discussed in the greatest detail. We suggest
that interested readers refer (o the papers listed in table 2
and the reference list for more detailed descriptions of
individual volcanic fields.

Boundaries of several volcanic fields are not well defined.
We have followed the prejudices of local workers in
distinguishing between contiguous volcanic terranes.

LAMPROPHYRE FIELDS

Lamprophyres are strongly undersaturated to saturated
rocks that occur as lava flows, dikes, and pyroclastic
deposits. Two chemical varieties of lamprophyre occur in
Arizona: sodic lamprophyres in the Hopi Buttes field and
potassic-sodic lamprophyres in the Navajo volcanic field
(fig. 1). The Hopi Buttes field is one of the world’s classic
areas for monchiquite lavas and dikes and limburgitic tuff
(Hack, 1942; Williams, 1936; Sutton, 1974). The field
contains more than 300 funnel-shaped diatremes and maar
volcanoes, and associated monchiquite flows. The maars
and diatremes resulted from phreatic eruptions through the
Pliocene “Hopi Lake” between & and 4 Ma and are as much
as 2.5 km in diameter and 150-1,200 m deep (Shoemaker
and others, 1962; Sutton, 1974). Some of the phreatic
eruptions ended with the emplacement of lava domes and
flows and the collapse of the walls of the volcanoes. Most
vents in the Hopi Buttes are aligned either N, 60° W. or N.
40° E., but a few show north alignment (Suiton, 1974), The
monchiquites contain augite and olivine phenocrysts (table
3); they differ from other mafic rocks in Arizona by the
absence of feldspar phenoerysts,

The Navajo volcanic field includes Eocene to Miocene
{(42-19-Ma) undersaturated and quartz-normative, mostly
potassic lamprophyre, and minor amounts of sodic
lamprophyre. The field is dominated by minette but
includes monchiquite, olivine leucitite, vogesite, katungite,
and alnoite (Williams, 1936; Ehrenberg, 1978; Laughlin and
others, 1986; Roden, 1981; Esperanca and Holloway, 1987).
The mineralogy of the rocks is extremely variable but
phlogopite, diopside, and alkali feldspar are the major
constituents (table 3).

Diatremes in the Navajo field, at Mule Ear, Moses Rock,
Cane Valley, Garnet Ridge, Red Mesa, Green Knobs, and
Buell Park, arc composed of serpentinized ultramafic
microbreccia (kimberlitic tuff in older papers). The
microbreccias have a fine-grained matrix of olivine,
orthopyroxene, clinopyroxene, garnet, apatite, serpentine,
and quartzite and contain blocks of Mesozoic and
Paleozoic sedimentary rocks and Precambrian gneiss,
granite, amphibolite, and granulite.

Middle Tertiary lamprophyric dikes also occur in the
Basin and Range province; Cooper (1973) and Haxel and
others (1980) mapped numerous lamprophyric dikes in
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parts of southern Arizona, The chemical composition of
these rocks is unknown, Haxel and others (1980) described
famprophyric dikes as being fine-grained to aphanitic rocks
composed of hornblende, biotite, and augite phenocrysts.

LATITE FIELDS -

Distributed over a large part of the Transition Zone are
QOligocene and Miocene phlogopite-hornblende-clinopyroxene-
bearing latite flows and plugs and associated pyroclastic
deposits (tables 1 and 3). The largest area of latite forms the
Sullivan Buttes (27-21 Ma); isolated latite flows occur near
Camp Creek, Reno Pass, and Turkey Canyon. These rocks
are transitional in chemistry between potassic lamprophyres
of the Navajo field and typical basalt and andesite of the
basalt-dominated ficlds.

Transition Zone latites are noted for their mantle and
crustal xenolith suites, which are dominated by eclogite and
amphibolite but include peridotite, websterite, pyroxenite,
granulite, and other crustal lithologies. Eclogite xenoliths in
the Sullivan Buttes field are composed of garnet and
clinopyroxene, minor amphibole, apatite, rutile, and Fe-Ti
oxides, and rare clinozoisite. Amphibolite xenoliths are
composed of pargasite and minor clinopyroxene, garnet,
phlogopite, apatite, and oxides. Phase layering is common
in the mafic and ultramafic zenoliths and is reflected by
contrasting layers with different clinopyroxene-garnet
ratios.

BASALT FIELDS

Some of the most spectacular volcanic landforms in
Arizona are associated with young basalt ficlds along the
margin of the Colorado Plateau and in parts of the Basin
and Range. The basalt fields are divided into two groups:
basalt fields without highly differentiated rocks and basalt
fields with highly differentiated rocks (table 1). Basalt fields
without differentiated rocks occur on the Colorado Plateau,
in the Basin and Range province, and in the Transition Zone
(fig. 1). Basalt fields with differentiated rocks generally are
restricted to the Colorado Plateau and Transition Zone, but
the Pinacate ficld is in the Basin and Range province.

In most basalt fields, alkali olivine basalt and basanité are
the dominant rock types. Tholeiitic basalt coexists with
aikalic basalt in the Black Hills, Springerville, and Mormon
Mountain fields. Andesite is the most common differentiated
rock in some of these fields (e.g., Mormon Mountain), but

.dacite and rhyolite are also common {e.g., San Francisco

field). Mineral contents of rocks in the basalt ﬁelds are
presented in table 3.

The basalt fields contain a variety of volcanic iandforms
cinder cones, spatter cones, and shields. Many of the cinder
cones have associated lava flows, dikes, and pyroclastic
deposits. Although rare in most basalt fields, maars and tuff
cones. oceur in the Pinacate, Springerville, San Bernardino
(Geronimo), Mormon Mountain, San Carlos, and San
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Clinopyroxene Orthopyroxene Hornblende Biotite Phlogopite Feldspar Plagioclase Alkali feldspar Sanidine Anorthoclase Quantz Tridymite Apatite Opaques Comments
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POST-LARAMIDE VOLCANIC ROCKS

Francisco volcanic ficlds. Basaltic centers in the ficlds
formed over relatively short periods of time compared to the
larger silicic volcanic centers. Many basaltic vents probably
formed over a period of a few months, but others probably
developed over a few hundred years. Evidence of multiple
eruptions from the same vent is indicated by petrographically
and chemically distinct lithologies on the same structure, for
example, in the Springerville, San Francisco, and Mormon
Mountain volcanic fields.

The mumber of vents in individual basalt fields is highly
variable (Lynch, this volume), The two largest fields, San
Francisco and Springerville, each contain between 400 and
600 volcanic centers. Approximately 300 vents occur in the
Pinacate field and 100-200 in the Mormon Mountain, San
Bernardino, and western Grand Canyon ficlds. Relatively
few vents are exposed in the Sentinel Plains field where low
shield voleanoes dominate the topography.

Volcanie rocks of most of the basalt-dominated volcanic
fields in Arizona yield ages less than about 15 Ma. The
oldest volcanic rocks associated with these fields occur in
the central part of the Transition Zone in the Mormon
Mountain (15-3-Ma), Hackberry Mountain (13-3-Ma), and
Black Hills (14-9-Ma) volcanic fields. Slightly younger,
mostly basaltic rocks occur along the margin of the
Colorado Plateau in the White Mountains (9-2-Ma),
Western Grand Canyon (9-Ma), and Springerville (9-Ma)
fields. The most recent basalt-dominated volcanism
occurred in several parts of the southern Basin and Range
(table 1),

Basaltic vents in several fields show strong preferred
alignments, as indicated by chains of cones, elongate cones,
and dikes. Northwesterly alignments are common in the
San Francisco volcanic field, especially in the eastern part
of the field (Moore and Wolfe, 1976). Most vents in the San
Bernardino field show north-northeast alignment apparently
controlled by preexisting structures and the regional state
of stress (Lynch, 1978; Menges and others, 1981).

Volcanic centers are commonty referred to as monogenetic
and polygenetic volcanoes. Monogenetic volcanoes are
emplaced over a relatively short period of time, erupting
only once {(Nakamura, 1977). Monogenetic volcanoes in
Arizona include some basalt cinder cones and basalt shield
volcanoes and andesite and dacite lava domes in the
Mormon Mountain, San Francisco, Springerville, and
Black Hills fields. Polygenetic volcanoes evolve over a
relatively long period of time and erupt numerous times
from the same vent or vents. They commonly show a wide
range in composition and style of volcanic activity.
Examples of polygenetic volcanoes include San Francisco
Mountain in the San Francisco field, Mormon Mountain
in the Mormon Mountain field, and Mount Baldy in the
White Mountains,

The largest shield volcanc in Arizona, Mount Baldy, is
a polygenetic center in the White Mountains volcanic field;
it is composed of at least 20 trachyandesitic to trachytic,
extrusive and pyroclastic units derived from the summit of
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Mount Baldy. Flow units are casily distingnished on the

basis of their petrography. They vary from aphyric to
coarsely porphyritic,

BIMODAL (BASALT-RHYOLITE) FIELDS

Several volcanic fields in western Arizona contain little
or no andesite to dacite. Bimodal associations occur in the

* Castaneda Hills, Kaiser Spring, Mount Hope, and Mount

Floyd volcanic fields (fig. I). A bimodal association may
also occur in the Plomosa Mountains, but sufficient
geochemical data ar¢ unavailable for this area. Well-
characterized bimodal associations show large silica gaps
and similar chemical compositions. Silica gaps in the
bimodal fields range from 58-72 weight percent SiQ; in the
Castaneda Hills, 56-69 weight percent silica in the Kaiser
Spring field, and 52-70 weight percent SiO in the Mount
Floyd field. Rhyolite lavas in the fields can also be divided
into low- and high-silica varieties.

Rhyolite volcanism in bimodal fields, and perhaps
bimodal volcanism in general, shows a northeastward
migration from the Basin and Range province, across the
Transition Zone, and onto the Colorado Plateau over the
past 19 m.y. Rhyolites erupted 19-15 Ma in the Castaneda
Hills, 13-8 Ma in the Kaiser Spring area, 8 Ma in the Mount
Hope field, and 10-2.5 Ma in the Mount Floyd field. Based
on limited age data for the bimodal fields, basaltic
volcanism preceded rhyolitic activity in all of them.

The alignment of the bimodal fields may be structurally
controlled. The fields are situated along the southern
extension of the Bright Angel fault system, a major
structural feature in northern Arizona that dates from the
Precambrian (Shoemaker and others, 1978).

ANDESITE-RHYOLITE-DOMINATED FIELDS

Large volcanic fields composed of large amounts of
intermediate to silicic rocks, and relatively small amounts
of basalt, occur in various parts of Arizona from the
southeast to the northwest corner of the State. Two types
of andesite-rhyolite-dominated fields are described: ash-
flow fields and lava fields. Ash-flow fields are associated
with the development and subsequent collapse of large
siticic volcanoes. These fields formed in the Basin and
Range province and along the margin of the Transition
Zone. Andesite-rhyolite volcanism appears to have begun
about 34 Ma and ceased about 10 Ma (table 1). Younger
volcanic rocks in the andesite-rhyolite fields are generally
basaltic or bimodal in composition and are not considered
by us to be associated with any older andesite-rhyolite
activity. The ash-flow fields include the Chiricahua
Mountains, Black Mountains, Superstition-Goldfield
Mountains, Castle Dome and XKofa Mountains, and the
Blue Range. No caldera-related voleanism occurred on the
Colorado Plateau.

In central Arizona, ash-flow tuffs form one of the largest
and most complex velcanic centers in the State, the
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Superstition-Goldfield Mountains volcanic field. The field
covers at least 5,000 km’ of the Transition Zone and
includes calc-alkaline latitic and rhyolitic ash-fali and air-
fall tuffs, lavas, and breccias. Minor amounts of nepheline-
normative alkalic basalt were extruded at various times
during the development of the volcanic sequence. Sheridan
{1978) suggested that the volcanic sequence resulted from
the emplacement of three overlapping cauldrons: the
Superstition cauldron (25 Ma), the Goldfield cauldron {15-
16 Ma), and the Tortilla cauldron (<15 Ma).

The Chiricahua Mountains in southeastern Arizona is a
well-characterized andesite-rhyolite ash-flow field composed
of rocks ranging in'composition from basalt to rhyolite. The
source of many of the lavas was the Turkey Creek caldera,
a feature that is now cccupied by a resurgent monzonitic
intrusion, The caldera erupted high-silica rhyolite ash-flow
tuff that locally attains a thickness of 430 m (Latta, 1983).
The remainder of the ash-flow tuffs originated from a vent
area southeast of the Turkey Canyon caldera. Most dated
rocks from the Chiricahua Mountains yield ages between 32
and 22 Ma.

Northwest of the Chiricahua Mountains in the Galiuro
Mountains is a sequence of andesitic to rhyolitic flows and
tuffs, the Oligocene and Miocene Galiuro Volcanics, that
includes two major and two minor ash-flow tuffs (Creasey
and Krieger, 1978; Krieger, 1979).

Widespread ash-flow sheets in the Castle Dome and Kofa
Mountains were derived from at least two late QOligocene
and Miocene calderas (Grubensky and others, 1986;
Grubensky, 1987). The ash flows are associated with lahars,
pyroclastic tuffs, and silicic to intermediate lava flows and
domes. Inferred calderas are situated above a 25-mGal
negative gravity anomaly.

The 19-Ma Peach Springs Tuff is a key stratigraphic
horizon in west-central Arizona and parts of southern
California. The unit covers more than 35,000 km?; it attains
a maximum thickness of 90 m in the southern part of the
Cerbat Mountains. The source of the Peach Springs Tuff
is unknown, but it is thought to have erupted from the nearby
Black Mountains or a buried caldera in the area.

The second type of andesite-rhyolite-dominated field is
characterized by voluminous andesite-rhyolite flows and
pyroclastic rocks. These fields differ from the ash-flow fields
by the absence of voluminous ash-flow sheets, Examples of
andesite-rhyolite lava fields include the Growler Mountains
in the Basin and Range province and the Mohon and
Aquarius Mountains in the western part of the Transition
Zone, Vent areas for andesite and dacite rocks in the Mohon
and Aquarius Mountains are Miocene (22-20-Ma)
stratovolcanoes. Volcanic products include lava flows,
breccias, and minor pyroclastic deposits,

UNCLASSIFIED FIELDS AND OTHER VOLCANIC
~ ROCKS

Because of limited geofogic and geochemical information,
we are presently unable to classify the volcanic rocks of the
Castle Hot Springs, Mohave Mountains, Cerbat Mountains,
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Trigo Mountains, and Martin Mountain voleanic fields.
The volcanic section in Castle Hot Springs area does not fit
any of our five volcanic associations. Ward (1977) estimated
that the area contains 10 km® of basalt, 13 km”® of rhyolite,
and about 6 km® of intermediate (latite) lavas and
pyroclastic rocks. We are uncertain whether this package
should constitute a sixth volcanic association or just reflects
the limited scope of Ward’s study.

The volcanic section in the southern Cerbat Mountains
includes a thick (<{100-m) lower basalt section, which is
overlain by the informally named <(55-m-thick Cook
Canyon tuff, which is in turn overlain by the <90-m-thick
Peach Springs Tuff (Buesch and Valentine, 1986).
Numerous K-Ar dates indicate that the Peach Springs Tuff
is about 19.2 Ma. Basalts of the Cerbat Mountains were
derived from local vents; the Cook Canyon and Peach
Springs ignimbrites were derived from an unknown
source(s}. Based on the descriptions of Buesch and
Valentine (1986), the two ignimbrites can be distinguished
on the basis of their modal compositions, The older Cook
Canyon tuff contains phenocrysts of biotite and plagioclase
and has trace amounts of quartz, olivine, clinopyroxene,
and hornblende. The Peach Springs Tuff is composed of
sanidine, quartz, plagioclase, and sphene phenocrysts.
Hornblende, olivine, and clinopyroxene also occur in the
Peach Springs Tuff and, according to Buesch and Valentine

(1986), may be xenocrystic in origin. These workers also .

suggested that the Peach Springs is a simple cooling unit
in the southern Cerbat Mountains. .
The volcanic geology of the Trigo Mountains is poorl

known because much of it lies within the restricted part of - -

the Yuma Proving Grounds. Based on the geology of the
surrounding mountain ranges, we would guess that this is
an andesite-rhyolite field. We also do not presently have
sufficient information to classify the Mohave Mountains
field. Volcanic rocks of this arca have been dated between
39 and 19 Ma. '

Two distinctive rock types occur in southern and eastern
Arizona. The first is a “turkey-track™ andesite that is

composed of abundant (as much as 90 per cent of the
mode}, large plagioclase phenocrysts (as much as 4 cm in

length) and sparse clinopyroxene, orthopyroxene, and

olivine phenocrysts and corroded quartz xenocrysts
(Cooper, 1961; Percious, 1968). The unit receives its name
from its characteristically large “turkey-track” glomerocrysts
{as much as 5 cm in diameter; Richter and others, 1983). It

is distributed across a large part of southern Arizona where :

it has been dated between 36 and 27 Ma. Turkey-track
andesites also occur in the Peloncillo Mountains, in the east-

central part of the state, where one unit there has been dated

at 20.4 Ma (Richter and others, 1983).

The second distinctive unit in southern Arizona is the.

Miocene Childs Latite. This rock is composed of plagioclase
phenocrysts (as much as 2.5 cm in length), augite, and
sparse olivine phenocrysts in a groundmass of magnetite,
olivine, plagioclase, augite, rare orthopyroxene, and minor
glass (Gilluly, 1946; Gray and others, 1985). The unit has
been dated at about 18 Ma,

POST-LARAMIDE VOLCANIC ROCKS

XENOLITHS AND MEGACRYSTS

Xenolith- and megacryst-bearing volcanic rocks are
common in Arizona {fig. 1). Mantle-derived xenoliths
represent fertile and ‘refractory upper mantle material,
Cumulate xenoliths ar¢ interpreted to be high-pressure
products of fractional crystallization and may represent
fragments of layered basic intrusions, pieces of deep-seated
plutonic bodies, or feeder dikes for high-level intrusions or
eruptive rocks. These rocks provide direct evidence of the
composition of the upper mantle and deep crust.

Mantle and cumulate xenoliths in basaltic rocks are
distinguished from one another on the basis of petrography
and chemical composition. Mantle-derived xenoliths
usually are lherzolites and harzburgites. These rocks are
dominated by olivine, orthopyroxene, clinopyroxene, and
spinel, in decreasing order of abundance. Minor amounts
of phlogopite and pargasite also occur in some mantle
xenoliths. Cumulate xenoliths have highly variable modes,
but the proportion of clinopyroxene usually exceeds that of
orthopyroxene. Plagiociase is primary in cumulate gabbros,
Cumulate xenoliths contain accessory titanomagnetite,
apatite, and ilmenite, Eclogites in the latite fields aré garnet-
clinopyroxene rocks containing small amounts of amphibole,
apatite, rutile, iron-titanium oxides, and altered clinozoisite
(Arculus and Smith, [979; Helmstaedt and Schulze, 1979;
Tyner, 1984; Esperanca and Holloway, 1984). Manile
xenoliths are depleted in iron (Mg/Mg+Fe = 0.86 to 0.91)
and light rare-earth elements (chondrite-normalized La
<20) compared with cumulate xenoliths (Mg/Mg+Fe =
0.62 to 0.78; chondrite-normalized La = §8-120).

Host rocks for xenoliths and megacrysts include a wide
range of mafic and intermediate rocks. Garnet-bearing
xenoliths (garnet peridotites, garnet clinopyroxenites, and
eclogites) are virtually limited to the lamprophyres in the
Navajo ficld and to latites in the Transition Zone {table 4),
Best (1975) described pyropic garnet-bearing xenoliths from
the western Grand Canyon voleanic field. No other garnet-
bearing xenoliths have been described from alkalic basalts
in Arizona. Spinel-bearing xenoliths occur in alkalic
basalts, latites, and lamprophyres of the Navajo field, Mica
clinopyroxenites occur in lamprophyres in the Hopi Buttes
and Navajo fields and in latites of the Sullivan Buttes
(Arculus and Smith, 1979). Gabbros are locally present in
alkalic basalts.

The size and shape of xenoliths in’ volcanic rocks are
highly variable (table 4). Most xenoliths are 2-3 cm in
diameter, but some are as large as 55 cm. They range in
shape from well rounded to angular. Round ones are
thought to have been abraded during ascent to the surface.

The most petrographically distinctive cumulate xenoliths
are comb-layered mafic and ultramafic ‘rocks from the
Mount Floyd and San Francisco volcanic fields (Nealey,
1980). Most of them consist of alternating bands (0.1-1.0cm
thick} of clinopyroxene, olivine, and plagioclase in a matrix
of opaque oxides and glass. The crystals are strongly
oriented, generally perpendicular to the banding. These
rocks are thought to represent quenched basaltic melts
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formed at shallow depths along the walls of dikes and other
Magma reservoirs,

Volcanic rocks that contain ultramafic and mafic
xenoliths usually also contain large single-crystal fragments
(table 4). Megacrysts (as large as 14 em) of clinopyroxene,
amphibole, and plagioclase are common; those of olivine,
spinel, magnetite, orthopyroxene, anorthoclase, and biotite
are rare. Clinopyroxene and ampiubole generally are the
largest megacrysts, and clinopyroxene is invariably the
dominant megacrystal phase. Megacrysts have been
interpreted as cognate crystals and as accidental inclusions
incorporated into ascending mafic and intermediate
magmas.

In addition to ultramafic and mafic xenoliths and
megacrysts, some mafic and intermediate volcanic rocks
also contain lower crustal, granulite-facies inclusions,
Granulite-facies and gneissic xenoliths have been reported
from the Navajo, Sullivan Buttes, Camp Creek, San Carlos,
San Bernardino, San Francisco, Castaneda Hills, and
Mount Hope volcanic fields (table 4). The compositions of
these rocks are variable, ranging from two-pyroxene
granulite to charnockite to amphibolite to eclogite
(Kempton and others, 1984; Stoeser, 1973; Esperanca and
others, 1988),

Lower crustal xenoliths from the Colorado Plateau and
Transition Zone show a wide range in Sr-isotope ratio.
Granulite xenoliths in basalts of the San Francisco volcanic
field have low measured 'Sr/**Sr values (0.7026-0.7037;
Gust and Arculus, 1986; M. A. Lanphere, U.S. Geological
Survey, written commun, 1987; Unruh and Nealey, 1.8,
Geological Survey, unpub. data). These values are similar
to those assumed for the sources of basalts in Arizona.
Measured *'Sr/¥Sr values of eclogites and amphibolites
from the Sullivan Buttes and Camp Creek are generally
higher than those for San Francisco ficld granulites
(Sullivan Buttes: 0.7040-0,7074, Arculus and others, in
press; Camp Creek: 0.7047-0.7081, Esperanca and others,
1988). Sr isotopic compositions of Sullivan Buttes and
Camp Creek eclogites are similar to those of some samples
of the Jurassic Point Sal ophiolite in California (Menzies
and others, 1977). These data allow that the xenoliths were
derived from subducted oceanic lithosphere, as suggested
by Helmstaedt and Doig (1975) for similar xenoliths from
the Navajo volcanic field.

Most Type 1 ultramafic xenoliths from the Transition
Zone and Basin and Range have low measured Sr isotopic
ratios. Of five Sr isotopic analyses that have recently been
reported, four are between 0.7031 and 0.7040 (Zindler and
Jagoutz, 1988; Menzies and others, 1985). One of the most
petrologically fertile mantle samples analyzed from San
Carlos yielded a value of 0.70555. The high Sr-isotope ratio
of this sample is in part due to secondary contamination by
caliche,

The isotopic compositions of mantic and crustal
xenoliths are important for characterizing mantle and lower
crustal sources of silicate melts. Available strontium
isotopic data for mantle and crustal xenoliths indicate that
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the upper mantle and lower crust beneath some parts of
Arizona have similar Sr isotopic ratios {Menzies and others,
1985; Roden and Jagoutz, 1988; Gust and Arculus, 1986;
. M. Unruh and L. D. Nealey, U.S. Geological Survey,
unpub. data), These data emphasize that certain magmatic
processes, such as crustal contamination, may be difficult to
discern solely on the basis of isotope geochemistry. To
illustrate this, it is usually assumed that crustal contamination
results in enrichment in radiogenic Sr. Sr isotopic ratios
greater than 0.706 in basalts are commeonly taken as
evidence of crustal contamination; however, assimilation of
some lower crustal material can actually lower the Sr
isotopic ratios of rising magmas. At this time we know very
little about the composition of the lower crust, but it has to
be considered in our models of magma genesis, -

GEOCHEMISTRY '

Volcanic rocks in Arizona show a large range in
composition, from strongly undersaturated lamprophyres
to strongly oversaturated high-silica rhyolites. The silica
content of these rocks ranges from 36 weight percent in
some lamprophyres to more than 77 percent in high-silica
rhyoliies. Trace-element abundances also show considerable
ranges, from high incompatible-element abundances in
some lamprophyres to low incompatible-clement abundances
in some tholeiitic basalts, In the following sections, we
present geochemical data for the five petrologic groups
described above. These data clearly show the spectrum of
major- and trace-clement compositions and isotopic ratios
that characterize the volcanic rocks in Arizona,

Major-, trace-, and rare-earth-element whole-rock
analyses that we have obtained were performed by X-ray
fluorescence and instrumental neutron activation analysis
in the laboratories of the U.S. Geological Survey in Menio
Park, California, and Denver, Colorado. Analytical
techniques for the U.S. Geological Survey data were
described by Baedecker and McKown, (1987), Taggart and
others (1987), and Johnson and King (1987). '

Major-element geochemisiry

The nomenclature of volcanic rocks is based mamly on
major-element chemistry. Whereas plutonic rocks can be
classified on the basis of their petrography, the abundance
of matrix material (e.g., glass) in volcanic rocks makes
geochemical data essential for their classification. In this
section we discuss the volcanic rocks of Arizona on the basis
of more than 3,000 major-element analyses. The object is
to classify the rocks according to the recommendations of
the International Union of Geological Sciences Subcommission
on the Systematics of Igneous Rocks (LeBas and others,
1986, fig. 2). This nongenetic classification scheme uses total
alkalies and silica. Anatyses were normalized volatile {ree
before plotting,
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Lamprophyres on the Colorado Plateau range chemically
from foidite to trachyandesite, Hopi Buttes and Navajo
lamprophyres contain 40-59 weight percent SiO; (fig. 2).
Most of the analyzed Hopi Buttes rocks are basanites, but
most of the analyzed Navajo rocks are shoshonites and
latites. Both lamprophyre suites plot above the line that
separates alkalic from subatkalic rocks in Hawaii (Macdonald
and Katsura, 1964).

Latites in the Transition Zone are also potassic rocks with

shoshonitic affinities. They plot in the shoshonite, latite,
and K-trachyte fields on alkali-silica diagrams. Latites
straddle the alkalic-subalkalic line and have K,0/NaO
greater than unity.

Volcanic rocks in basalt-dominated fields range in
compositior from basalt to rhyolite (figs. 2 and 3). Most
mafic rocks are alkalic basalt; a few are theleiitic. Many
basalt-dominaied suites siraddle the alkalic-subalkalic line,

and they commonly trend from the alkalic field to the.

subalkalic field with increased silica content. ,
‘Two distinct chemical trends are present in the Pinacate

volcanic field. Older Pinacate rocks (18-5 Ma) are,

subalkalic with calc-alkalic affinities. Younger lavas (<2
Ma) are alkalic and range in composition from basalt to
trachyte, This pattern shows that relatively similar parent
magmas can evolve along different paths.

The bimodality of the bimodal (basalt-rhyolite) volcanic-

fields is apparent on alkali-silica diagrams and silica
histograms (figs. 2 and 3). Whereas the basalt-dominated
fields with differentiated rocks contain substantial amounts

of andesite and dacite {e.g., Mormon Mountain), the .

bimodal fields contain no dacite and usually no andesite
(e.g., Mount Floyd, Kaiser Spring). Rhyolites in the
bimodal fields plot below the extension of the alkalic-
subalkalic line and can be distinguished into a high-silica
group and a low-silica group. Low-silica rhyolite in the
Mount Floyd field averages about 70 weight percent Si0O,
and high-silica rhyolite 76 weight percent SiQ,.

Andesite-rhyolite-dominated fields contain rocks ranging |
in composition from basalt to rhyolite (fig. 2). Analyzed.
basic rocks in the fields are typically alkalic basalts that plot

above the alkalic-subalkalic line.

Although unaltered volcanic rocks are analysed if
available, many of the late Cenozoic volcanic rocks in
southern and central Arizona have undergone pervasive
alteration. Identification of these rocks is extremely
important for geochronologic studies in the region.

Alteration of late Oligocere and Miocene andesite-rhyolite :
suites is indicated by either abnormally high or abnormally .

low total alkali contents, by high K20/Na,O, and by the
presence of secondary potassium feldspar (Orss-Oros; S. 1.
Reynolds, written commun., 1987), epidote, calcite, and
silica (W, E, Brooks, oral commun., 1987). Altered volcanic
rocks oceur in the Mohave Mountains (K,0/Na,O < 54),

Vulture Mountains (K20/Na;O < 42), Chiricahua
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Figure 2. Alkali versus 810, diagrams for selected post-Laramide volcanic rocks in Arizona and in northern Senora, Mexico. Classification
scheme from LeBas and others (1986). Pc = picrobasalt; B = basalt; O = basaltic andesite; 02 = andesite; O3 = dacite; R = rhyolite; 51 =
trachybasalt; 82 = basaltic trachyandesite; S3 = trachyandesite; T = trachyte; Ul = basanite; U2 = phonotephrite; U3 = tephriphonolite;
Ph = phonolite; and F = foidite. Long-dashed line is allcalic-subalkalic line of Macdonald and Katsura (1964), All vatues in weight per-
cent {adjusted volatile-free). Sources of data given in table 2. (Continued on next page.)

Mountains (K20/ Na,O < 44), at Hoover Dam (K,0/Na;O
< 10), and in the Castle Dome Mountains (K,0/Na,O <
7.

Trace-element Geochemistry

Although they amount to less than one percent of a rock,
trace elements are extremely vaiuable for understanding the
origin and evolution of volcanic rocks. Based on more than
300 trace-element analyses, abundances of Rb, Ta, Th, Cr,
and Sr were used to distinguish the five petrologic groups.
The selection of the elements was made on the basis of the
availability of data, but more importantly to show the
behavior of specific elemental groups. Rb was selected as an
index of differentiation and as a good indicator of crustal

interaction. Ta usually behaves as an incompatible trace
element that is little affected by post-emplacement
alteration and is commoniy highly corrclated with other
incompatible elements, Cr is a compatible element that is
sensitive to the fractionation of mafic mineral phases, Sr is
highly compatible with feldspars and is essential to Rb-Sr
isotopic systematics. And finally, Th was selected as an
index of differentiation because of its highly incompatible
behavior in magmatic systems.

Rb and Cr show considerable Vanablhty in Arizona
volcanic rocks. Rb ranges from 5 ppm in sodic lamprophyres
to 300 ppm in potassic lamprophyres, trachytes, and high-
silica rhyolites. Rb generally increases in abundance with
increasing differentiation. Cr is usually high in mafic rocks
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Figure 2, continued,

(as much as 575 ppm in K-lamprophyres; as much as 700
ppm in basalts of basalt fields), low in intermediate and acid
rocks (as little as <1 ppm, the instrument detection limit for
neutron activation analysis), The decrease in Cr content
with increasing differentiation is in part related to its
preferential incorporation into clinopyroxene and olivine
during fractional crystallization,

Cr versus Rb diagrams (fig. 4) demonstrate that (1} the
late Oligocene and Miocene volcanic rocks of the Transition
Zone and Colorado Plateau have high Cr and Rb
concentrations, (2) the late Miocene to Holocene basalt-
dominated suites generally show a rapid decrease in Cr with
increasing Rb content, and (3) the late Miocene and
Pliocene rocks of bimodal basalt-thyolite suites are
characterized by intermediate rates of decrease of Cr with
increase of Rb. In general, Cr decreases with increasing Rb
content, but these two elements show considerable scatter
in suites from the Springerville, Black Hills, and the Hopi
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Buttes areas. Two samples from the Springerville field have
high Rb and low Cr contents compared with the rest of the
suite; they were derived from lava flows erupted from
Mount Baldy (White Mountains field). Cr and Rb are
highly correlated in the bimodal suites of the Mount Floyd,
Castaneda Hills, and Kaiser Spring volcanic fields and in
lamprophyres of the Navajo field. One the most interesting
characteristics of these rocks, and of latites from Sullivan
Buttes and Turkey Canyon latites, is their high Cr contents
at high Rb concentrations. Two samples from the Mohon
Mountains also have high Cr contents at intermediate to
high Rb concentrations. :

Trends in some basaltic volcanic fields that show little
change in Rb with change in Cr (e.g., Springerville} are
difficult to explain solely by olivine and clinopyroxene
fractionation. To explain the trace-element variations in the
western part of the Springerville voleanic field, Condit
(1984) suggested that the basalts evolved from different
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Figure 3, His_tograms showing the qistrii‘)ution of silica in rocks from selected post-Laramide volcanic fields of Arizona and of northern
Sonora, Mex1c_0: Data sources are given in table 2 All analyses plotted volatile-free. Analyses less than 42 weight percent silica normatized
ta 42 percent silica. Analyses greater than 77-weight percent silica normalized to 77 percent silica, Normalization affects the lamprophyre

fields and altered rocks and was done in order to allow better comparison between fields.

batches of parental magma. Based on preliminary analysis
of available data, Condit’s model may be true for other
basalt-dominated fields such as the San Francisco and
Mormon Mountain fields. Strong negative correlations
between Cr and Rb in the bimodal suites are probably

related to the basalts having a mantle source and the
rhyolites having a crustal origin. Intermediate members of
these suites may be the products of magma mixing, The high
Cr and Rb contents of the late Oligocene and Miocene lavas
are enigmatic.
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Strontium concentrations in Arizona volcanic rocks are
even more variable than Rb concentrations. Strontium
ranges from 4,150 ppm in limburgitic tuffs of the Hopi
Buttes to less than 10 ppm in some high-silica rhyolites.
Strontium abundances in latites are 700-1,300 ppm and in
the basalts of basalt and bimodal fields are 300-3,000 ppm
(c.g., Black Hills 400-3,000 ppm; Mohon Mountains 300-
800 ppm; Castaneda Hills, 350-900 ppm; Mormon
Mountain, 400-800 ppm). In basalt fields with differentiated
rocks the concentration of Sr generally decreases with
increasing silica content, but in scveral suites in central
Arizona Sr incréases in the basalt-andesite range and
decreases in the dacites and rhyolites (e.g., Mormon
Mountain and Mohon Mountains). In the bimodal basalt-
rhyolite fields, the concentration of Sr is either higher in the
basaltic rocks than it is in the rhyolites {(e.g., Kaiser Spring},
or completely uncorrelated with silica content (e.g., Mount
Floyd). High-silica rhyolites in the Kaiser Spring and
Mount Floyd fields are depleted in Sr relative to the low-
silica rhyolites. Of five analyzed high-silica rhyolites from
the Mount Floyd field, four contain less than 10 ppm S,
compared to 210-750 ppm Sr in the low-silica rhyolites.

Arizona volcanic rocks define two distinct patterns on Sr
versus Rb diagrams: one a curvilinear pattern and the other
a linear patiern (fig. 5B). Bimodal and andesite-rhyolite
suites show curvilinear patterns that trend from high Sr
contents at low Rb to low Sr at high Rb, Pinacate and White
Mountains volcanic rocks (fig. SA} also closely follow the
same overall trends. Pinacate rocks, however, show a much
more rapid decrease in St with increasing Rb than the
bimodal and andesite-rhyolite suites. Lamprophyres of the
Hopi Buttes and Navajo volcanic fields have high Sr
contents at nearly constant Rb levels, but the rocks in the
latter field have higher Rb concentrations than Hopi Buttes
lamprophyres, consistent with their potassic affinities.
Latites of the Sullivan Buttes and Camp Creek volcanic
fields contain similar amounts of Sr at nearly constant Rb
levels. Sr abundances in the latites, however, are slightly
lower than they are in Navajo lamprophyres.

We attribute the two distinct patterns of Sr versus Rb to
a combination of crystal fractionation and crustal
contamination. Removal of olivine and clinopyroxene will
increase Sr and Rb in the residual liquids; however, the
fractionation of plagioclase will decrease St and increase Rb
in the residual magma. Suites such as those from the White
Mountains show plagioclase-controlled fractionation.
Other suites that are enriched in Rb relative to St apparently
originated by mixing of mantle-derived melts and middle-
upper crustal material. High Sr concentrations in some
Colorado Plateau and Transition Zone rocks are considered
by us to be related to interaction with high-Sr lower crust,
as indicated by the presence of high-Sr lower crustal
xenoliths.

The second index of differentiation that we use for
interelement comparison is tantalum. Tantalum is highly
incompatible in magmatic systems, being partitioned
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preferentially into the melt during crystal fractionation. It
occurs in trace abundances (0.4-15 ppm) in volcanic rocks
in Arizona. Binary plots of Th versus Ta for rocks from
various volcanic fields show two basic patterns {fig. 6A).
The first pattern is characterized by strong positive
correlations between Ta and Th. Rocks from the Mount
Floyd, Springerville, White Mountains, San Francisco,
Mormoen Mountain, Chiricahua Mountains, and Kaiser
Spring fields typify this trend. The second pattern is a
shotgun array and typifies the Castaneda Hills and Mohon

~ Mountains suites. Sullivan Buttes and Turkey Canyon

latites show features of this pattern and are notable for their
high Th abundances at low Ta contents (0.6-2 ppm Ta).
Ash-flow tuffs of the Chiricahua Mountains also have high
Th contents but are enriched in Ta (2-7 ppm Ta) compared
with the latites. Navajo lamprophyres also have high Th
contents (18-70 ppm); however, the concentration of Ta in
these rocks is poorly known. A single Ta analysis of a
Navajo lamprophyre gave a value of 4.15 ppm (Thompson
and others, 1984), If the data for the late Oligocene and
early Miocene lavas are representative, then these rocks can
be distinguished from younger volcanic rocks by their
generally low Ta and high Th abundances.

Strong correlations between Ta and Th are commonly
used to test whether volcanic rocks are related by crystal
fractionation or by some other magmatic process. This test
involves the assumption that mineral phases on the liquidus
of silicate melts are solely responsible for magmatic
differentiation. In continental volcanic fields, this assump-
tion may not be valid because of the likelihood of crustal
contamination and anatexis. Assuming that the crust
beneath Arizona has Ta and Th abundances similar to the
average upper crust and fower crust estimated by Taylor
and McClennan (1985), then patterns for several of the
volcanic suites in Arizona (e.g., Castaneda Hills, San
Francisco, Mormon Mountain) have minimum Ta contents
similar to the composition of average lower crust (0.6 ppm
Ta; 1.06 ppm Th), and many have maximum Ta contents
near the composition of average upper crust (2.2 ppm Ta;
10.7 ppm Th; Taylor and MeClennan, 1985). These
similarities may be indicative of substantial crustal
involvement in the evolution of these rocks.

Rare-earth Element Geochemistry
Lanthanide-group elements are important trace elements
for studying magmatic processes in igneous rocks. Their

" abundances relative to chondrites, mid-ocean ridge basalt,

and primitive mantle are a common means of comparing
volcanic rocks within individual voleanic fields and between
volcanic fields from different tectonic environments, In this
section we use chondrite-normalized rare-earth-element
(REE) diagrams to characterize post-Laramide volcanic
rocks in Arizona. Chondrite-normalized REE patterns for
selected volcanic rocks from several post-Laramide ficlds

are shown in figure 7. We do not show REE spectra for
tuffaceous rocks from the Navajo and Hopi Buttes fields’
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Table 4. Types of xenoliths and megacrysis in veleanic rocks of Arizona and of northern Sonora, Mexico, (Rock and mineral names are those of orig-

inal workers. Maximum dimension of inclusions shown in parentheses.)

Field
no. Field name Xenoliths Megacrysts Reference
) . . ] Lamprophyre fields
1. Hopi Buttes mica clinopyroxenite, hornblendite  clinopyroxene, mica, amphibole Lewis (1973); L.D. Nealey, unpub,
(12,5 cm) (5 cm) data
2. Navajo : spinel peridotite, garnet peridotite, clinopyroxene (9 cm) MecGetchin and Silver, 1972;

Iherzolite, harzburgite, dunite,
websterite, garnet granulite,
eclogite, clinopyroxenite (30 cm)

Ehrenberg, 1978; Hunter and Smith,
1981; O’Brien, 1983

' ] Latite fields

3. Sullivan Buttes eqloglte, horz?blendite,. gartet orthopyroxene, Arcufus and Smith, 1979; Tyner and

: cimopy:_foxcmte, a.mph1b‘ole garnet Smith, 1986; Tyner, 1984; Arculus and
websterite, granulite, spinel others, in‘press

: peridotite (55 cm)

‘4. Camp Creek eclogite, amphibolite, garnet Esperanca and Holloway, 1984
websterite (15 cm) ’

5. Reno Pass eclogite (7.5 cm) M.E Sheridan, unpub. data

Basalt fields

7. Western Grand Canyon  amphibole peridotite, spinel
peridotite, gabbro, garnet-spinel-
peridotite (30 com)

spinel therzolite, harzburgite,
websterite, clinopyroxenite,

8. San Carlos

{21.5 cm)

9. San Bernardino
: two-pyroxene granulite, spinel

websterite, wehrlite, harzburgite,
granulite (30 ¢m)
10. Sentinel Plains
11. San Francisco

olivine clinopyroxenite (I cm}

wehrlite, gabbro, websterite,
granulite, anorthosite,
clinopyroxenite (50 cm)

12. Springerville olivine-clinopyroxenite, gabbro

13. White Mountains
14. Mormon Mountain

olivine-clinopyroxenite (3 cm)

gabbro, spinel wehrlite, olivine
websterite, spinel websterite (8 cm)

19. Pinacate gabbro, dunite, spinel peridotite,
: clinopyroxenite, websterite,
wehrlite (35 cm)

20, Mount Floyd spinel peridotife, ‘gabbro, dunite
: (12 cm) '

peridotite, gabbro, websterite,
wehrlite, granulite (28 cm)

22, Castaneda Hills

kaersutite, clinopyroxene,
orthopyroxene, olivine (6 cm)

kaersutite, plagioclase, spinel,
I olivine, clinopyroxene, biotite,
orthopyroxenite, gabbro, granulite anorthoclase (6 cm)

granulite, dunite, spinel pyroxenite,  clinopyroxene, olivine (6 cm)

clinopyroxene, plagioclase,
(30 cm) amphibole (2.5)

clinopyroxene (1.5 cm) .
clinopyroxene, olivine (3 cm)

Bimodal (basalt-rhyolite) fields
plagioclase, clinopyroxene,
amphibole (3 cm) :

plagioclase, clinopyroxene, olivine,  Suneson and Lucchitta, 1983; Wilshire
spinel, magnetite, amphibole

Best, 1970, 1974a,b, 1975

Frey and Prinz, 1978; Basu, 1978;
Caporuseio, 1980; Garcia and others,
1980; Irving and Frey, 1984; Zindler
and Jagoutz, 1988; Joaquin Ruiz, oral
commun., 1988

aikali gabbro, kaersutite peridotite,  clinopyroxene, plagioclase, olivine, Lynch, 1972; Arculus and others, 1977;
spinel, amphibole, anorthoclase
therzolite, clinopyroxenite, (6 mm)

Evans and Nash, 1979; Kempton and
others, 1984; Menzies and others, 1985

L.ID. Nealey, USGS, unpub, data

Cummings, 1972; Stoeser, 1973: R.B.
Moore, USGS, unpub. data

Condit, 1984; L.S. Crumpler and J.C,
Aubele, USGS, unpub. data

L.D. Nealey, unpub. data

Gust and Arculus, 1986; L.D. Nealey,
unpub, data

plagioclase, clinopyroxene, spinel, Lynch, 1981; Gutmann, 1986
olivine, amphibole (10 cm)

" Nealey, 1980

and others, 1985

' ) (11 em) . e T
21, Moupt Hope _ _ spi_n;__zi peridotite, gabbro, gneiss_ plagioclase, amphibole, ( Nealey and Ward, USGS, unpub, data;
' (18 cm) . _ clinopyroxene, magnetite (14 cm) . A.M. Simmons, SUNY at Buffalo,

o . Andesite-rhyolite fields : T "
dunite, wehrlite, websterite, spinel amphibole, olivine, plagioclase,

unpub. data P

R e
37. Hoover Dam ) i Campbell and Schenk, 1950; Basu,
lherzolite (15 ¢cm) clinopyroxene, alkali feldspar 1978; Garcia and others, 1980
(15 cm) '

because of possible effects of crustal contamination and
post-emplacement alteration, _

All volcanic rocks in Arizona are enriched in REE
relative to average chondritic values. Minettes in the Navajo
field show the most enrichment (total REE abundances =

286-942 ppm), followed by Hopi Buttes lamprophyres {total
REE = 418-572 ppm). Rocks showing the least REE
enrichment are tholeiites in the Black Hills (total REE = 46
ppm) and Martin Mountain volcanic fields (total REE = 42
ppm). Ultramafic microbreccias of the Navajo field also
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Figure 4A, Chromium versus rubidium plots for rocks in selected post-Laramide volcanic fields, Arizona,

have low REE concentrations (Roden, 1981). The high
REE enrichment of most basalts indicates that their
source(s) was enriched in REE relative to chondritic values.
T'his is supported by REE enrichments in mantle xenoliths
from this region (Frey and Prinz, 1978; Menzies and others,
1985).

Except for high-silica rhyolites in the Kaiser Spring,
Mount Floyd, and Castaneda Hills fields, volcanic rocks in
Arizona are also enriched in light REE compared to heavy
REE. Chondrite-normalized La/Yb values range from 87.
in the most fractionated Navajo lamprophyre to 2 in basalt
from Martin Mountain, Significant fractionation of light
from heavy REE can result from either partial melting of
the source region or crystal fractionation of parental
magmas.

Arizona volcanic rocks also show 2z wide range in
europium anomalics, although many rocks show no Eu
anomaly. Small positive anomalies occur in basalts from the
Aquarius Mountains and Black Hills fields: Large negative

anomalies occur in some rthyolites, especially high-silica
rhyolites in bimodal and andesite-rhyolite fields (e.g.,
Mourit Floyd, Castaneda Hills, Kaiser Spring). Mild
positive europium anomalies can be related to either Eu
anomalies in the source region or to feldspar accumulation.
Negative Eu anomalies in silicic lavas are attributed either
to the removal of feldspar by crystal fractionation,
especially under reducing conditions, or to partial melting
of a feldspathic source in which the feldspar remains as a
refractory mineral phase in the source region.

Strontium and Necdymium Isotopes

Another geochemical tool used by petrologists for
unraveling the evolution of volcanic rocks is isotopic ratios.
Isotopic ratios of volcanic rocks are important petrologic

tools because they can provide information about the source '

material, magma mixing, and crustal contamination. Some
volcanic fields in Arizona, especially those on the Colorado
Plateau, have received considerable attention by geochemists,
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Figure 4B. Chromium versus rubidium plots for the five petrologic groups of rocks from representative volcanic fields, Arizona. Explanation
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Figure 5A. Strontium versus rubidium plots for rocks in selected post-Laramide volcanic fields of Arizona and of northern Sonora, Mexico.

but many ficlds have not been studied at all. Below we
briefly review available strontium and neodymium isotopic
data for post-Laramide volcanic rocks in Arizona.
Strontium isotopic ratios of Arizona volcanic rocks (fig,
8) are highly variable and overlap considerably for the
different rock types in this study. Initial Sr isotopic ratios
are also highly dependent upon the ages and Rb and Sr
abundances of the rocks. The lowest ratios (<0.704) occur
in young (<8-Ma) basalt-dominated volcanic ficlds (e.g.,
San Francisco, Mormon Mountain, San Carlos). The
highest ratios (>>0.713) are associated with the Oligocene
and Miocene andesite-rhyolite-dominated Chiricahua and
Superstition-Goldfield Mountains ficlds. The potassic
lamprophyres of the Navajo field are enriched in radiogenic
strontium compared with the sodic lamprophyres of the
Hopi Buttes field. Latites from Camp Creek and Sullivan
Buttes and lamprophyres of the Navajo field have similar
strontium isotopic compositions. '

Strontium isotopic compositions of young basalits on the
Colorado Plateau (¢.g., San Francisco and White Mountains
fields) overlap with those of basalts in the Basin and Range
and Transition Zone (e.g., San Carlos, San Bernardino, and
Hackberry Mountain fields). Colorado Plateau basalts
generally tend to show a wider range in ¥7Sr /*Sr than Basin
and Range basalts, and this suggests that plateau basalts
experienced more crustal contamination than those erupted
in the Basin and Range.

Initial strontium isotopic ratios of silicic rocks on the
Colorado Plateau are lower (<0.705) than those in the
Basin and Range (>0.705). For example, rhyolites in the
San Francisco and Hackberry Mountain fields have
¥1Sr/*Sr values of 0.703-0.7055 compared with values of
0.7055-0.714 in the Superstition-Goldfield and Chiricahua
Mountains. This difference may be because silicic rocks in
these two regions have different sources or because the
silicic magmas erupted in the Basin and Range had greater
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Figure 6A, Thorium versus tantalum plots for rocks in selected post-Laramide volcanic fields, Arizona.

amounts of upper crustal contamination. Young (<.5-Ma)
Colorado Plateau dacites and rhyolites have strontium
isotopic ratios that overlap those of lower crustal granulite-
facies xenoliths of the Colorado Plateau (Gust and Arculus,
1986; M. A. Lanphere, U.S. Geological Survey, unpub.
data; D, M. Unruh and L. D. Nealey, U.S. Geological
Survey, unpub. data}. Miocene dacites and rhyolites in the
Basin and Range, in contrast, typically have ' Sr/**Sr values
that approach those of some Proterozoic granitic rocks (R,
W. Kistler, U.S. Geological Survey, personal commun.,
1986).

Limited neodymium isotopic data exist for post-
Laramide basalts in Arizona. These data suggest that the
source of basalts erupted in the Basin and Range is
isotopically different from the source of basalts erupted in
the Transition Zone and on the Colorado Plateau (fig. 9).
Basalts from the Basin and Range and Rio Grande Rift
have higher “*Nd/"*Nd than those from the Transition
Zone and Colorado Plateau, with the exception of basalts

in the San Carlos field, whose Nd isotopic signature
resembles that of Basin and Range basalts (Wittke, 1984;
Menzies and others, 1985; Alibert and others, 1986; Perry
and others, 1987; Unruh and others, 1988; Zindler and
others, 1988). This similarity between San Carlos and Basin
and Range basalts may be due to the proximity of the San
Carlos field to the Basin and Range province.

In summary, it appears that trace clements are useful for
distinguishing between the five petrologic groups: lampro-
phyre, latite, basalt-dominated, bimodal basalt-rhyolite,
and andesite-rhyolite. Abundances of rubidium and
chromium are useful for separating latites and K-
lamprophyres from other volcanic associations because of
the high Cr contents of these rocks. These data can also
distinguish the Na-lamprophyres from the K-lamprophyres
and help to distinguish basalt suites from bimodal and
andesite-rhyolite suites. REE abundances serve to separate
K-lamprophyres from K-latites and are useful for distinguishing
tholeiitic basalts from alkalic basalts in basalt-dominated
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] 1% 1 5 E 3 g% S (52-64 wt. percent Si0»), and silicic groups (> 64 wt, percent In many of the volcanic fields in Arizona and northern
2 Ju A= 1 a8 de F8%L Si0),). Basaltic andesites are classified as mafic rocks, and Sonora both alkalic and tholeiitic basalts coexist. For
o) Q 2 IS _ ggd ati ; di . . ) Ale. M M .
~ a7 T 1 = Ja Ee.Hg atites as intermediate. example, in the Springerville, Ormon ountain,
s 2 = = . : . . e .
" 4E 18 3= 15 3 §§§ : ' Pinacate, and Black Hills fields tholeiitic basalts coexist
g 43 -5 i 0 1% FE2 Mafic rocks - : with more voluminous amounts of alkalic basalt, In the
2 18 Jee 1 5 - QEZH ! . ] - ‘ re volumi .
2 4= s 4 = 42 SE gk Published trace-element and isotopic studies (Menzies Biack Hills the earliest eruptive products were alkalic
E -~ 41 3 7] Do oo . P p
- 18 4 3 18 ~ESS and others, 1985; Alibert and others, 1986; Perry and basalts, beginning about a million years before the onset of
b= . AT others, 1987; Zindler and Jagoutz, [988; Unruh and others, tholeiitic volcanism, which lasted 3-4 million years { Wittke,
v n E} E’n == . . « . N y .
TR T BT T T T ] ] E Jé £ 50 1988) indicate that at least four distinct source regions 1984). Wittke interpreted the change from alkalic to
4 4 1 = 1" contributed to the composition of basaltic magmas in tholeiitic magmatism as representing either progressive
g
n -~ 48 -1 n p . . .. g g p g . p -
= e 15 . "E 1% Arizona: (1) depleted mantle, similar in composition to the melting of the same source material or melting of a similar
i Ja :ﬁ 4 = & source of mid-ocean ridge basalts; (2) mantle enriched in source at different depths (i.e., diapiric melting). Other
x 7 E 32 1o - f’; radiogenic Sr, Pb, and Nd; (3) lower continental crust; and voicanic fields, such as Springerville and the Western Grand
rr_"'é 1m N § R 3" {4) upper continental crust. Table 5 presents a summary of Canyon, show trends toward increasing degree of undersat-
© mk 15 1l q= mantle sources that bave been proposed for the parental uration with time (C. D. Condit, oral commun,, 1987; J. G.
4 . 1 & “§ magmas of basalt, lamprophyre, and latite in several Fitton, written commun., 1988).
3 volcanic fields in Arizona and northern Sonora. Mantle Quartz-bearing basalts occur in many, if not ali, of the

airJpuoyy / afdues g3fupuoyy / spdwes - 33rJpuoyy / ardwes . F3rJpuoy] / afdwes . . . : . . e . .
T _ _ source regions for primary basaltic melts are considered to late Cenozoic volcanic fields in Arizona. These rocks are
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Table 5. Characterization of mantle sources of some post-Laramide basalts, lamprophyres, and latites of Arizona and northern Sonora, Mexico.

Field name Mantle source characteristics References
Lamprophyre fields i
Navajo Phlogopite- and apatite-bearing garnet peridotite sub- Roden and Smith, 1979; Roden, 1981; Laughlin and others,

Suflivan Buttes
Camp Creck

Western Grand Canyon
San Carlos

San Bernardino
San Francisco
Springerville
White Mountains

Mormon Mountain
Black Hills
Pinacate

continental mantle

Latite fields
Metasomatised subcontinental mantle

Phlogopite-bearing spinel or garnet peridotite mantie

. Rasalt fields
Ancient subcontinental mantle

Metasomatised suboceanic-type mantle

Metasomatised suboceanic-type mantle
Subcontinental mantle, possible crustal contamination
Metasomatised mantle

Metasomatised spinel or garnet peridotite subcontinen-
tal mantle

Metasomatised mantle
Metasomatised subcontinental mantle
Metasomatised mantle

1986; Alibert and others, 1986; Esperanca and Holloway,
1987

Tyner, 1984; Tyner and Smith, 1986
Esperanca and Holloway, 1986

Leeman, 1974; Alibert and others, 1986

Frey and Prinz, 1978; Zindler and Jagoutz, 1988; Menzies,
1987

Menzies and others, 1985

Leeman, 1982; Everson, 1979; Alibert and others, 1986
C.ID, Condit, written commun., 1987

L.D. Nealey, USGS, unpub. data

Gust and Arculus, 1986 _
Wittke, 1984; Everson, 1979
D.J. Lynch, oral commun.,, 1987
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interpreted to have evolved by decompressive resorption of
primary magmas that fractionated at high pressures (15 to
25 Kb; Suneson and Lucchitta, 1983); by crustal contamina-
tion of primary and differentiated magmas (Nealey, 1980);
and by partial melting of the lower crust (Otton, 1982).

The source of the latites in the Transition Zone has been
attributed to melting of phlogopite-bearing garnet
peridotite (Esperanca, 1984; Tyner, 1984). Evolved latites of
the Camp Creek field were suggested to be related to
primitive latites by fractional crystallization (Esperanca and
Holloway, 1986). Tyner (1984) stated that she was not able
to demonstratc a simple genetic relationship between
different types of latite from the Sullivan Buttes field. She
suggested that evolved latites of the Sullivan Buttes could
be related to mafic latite magmas by contamination by
xenolithic material similar in composition to the associated
eclogite-amphibolite suite, combined with crystal
fractionation.
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Intermediate rocks

Petrologic studies of andesites and dacites in Arizona
{Wenrich-Verbeek, 1975, 1979; Eichelberger, 1978; Gust
and Arculus, 1986; Simmons, 1986: Unruh and others,
1988) suggest that they originated by a variety of processes,
including crystallization of primary basaltic material,
assimilation of crustal material by parental basaltic magma,

~and mixing of basalt and melted sialic crust. Crystal

fractionation of basalt is indicated by major- and trace-
element modeling of phenocrystic phases. Magma mixing
and crustal assimilation are substantiated by disequilibrium
phenocryst textures, the presence of crustal xenoliths and
xenocrysts, and by linear trace-clement and isotopic
patterns.

Open-system magmatic processes have been shown to be
effective in producing intermediate rocks in the San
Francisco and White Mountains volcanic fields (Wenrich-
Verbeck, 1975, 1979; Nealey, 1987). Temporal variations in
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Figure 8. Strontium isotope plot for rocks from sefected post-Laramide volcanic fields of Arizona and of northern Sonora, Mexico. Symbols:
squares = mafic rocks; triangles = intermediate rocks, stars = silicic rocks. Arrow indicates value greater than (.714. Sources of data given
in table 2.
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Figure 9. Neodymium isotope plot for selected post-Laramide voleanic fields, Arizona. Analyses of late Cenozoic volcanic rocks from New
Mexico are shown for comparison. Symbols: squares = mafic rocks, triangles = intermediate rocks, stars = silicic rocks. Sources of data givén
in table 2. New Mexico data from Perry and others, 1987,




major- and trace-element geochemistry of the San
Francisco Peaks (San Francisco volcanic f ield) and Mount
Baldy (White Mountains) lavas indicate that they formed
by repeated injections of primitive magma into differentiating
magmatic systems. Differentiation resulted from fractional
crystallization and crustal assimilation. The ultimate source
of some intermediate lavas in the San Francisco Peaks and
at Mount Baldy may be the lower crust. :

Silicie' Rocks

Most rhyolites in Arizona were probably derived by

anatexis of the crust, but crystal fractionation is theorized
as the origin of some rhyolite magmas (Gust and Arculus,
1986). Based on trace-element modeling, Gust and Arculus
(1986) concluded that rhyolites in the Mormon Mountain
field could have formed by either partial ‘melting of lower
crustal amphibolite or fractionation of associated andesite.

Rhyolite lavas of bimodal (basait-rhyolite) - fields
probabiy originated by crustal melting. High-silica rhyolites
(>75 wt. percent SiO») in bimodal fields of western Arizona
have strong negative europium anomalies and high Sr
isotopic ratios (Suneson and Lucchitta, 1983; Moyer, 1986;
Moyer and Nealey, 1987). They plot in the low-pressure
field of the Ab-Or-Qtz system and in the same feld as
central Arizona Proterozoic granitic rocks on Th-Ta-Hf
diagrams. The high Sr isotopic ratios of the high-silica
rhyolites (0.709-0.714) also overlap-those of Proterozoic
granitic rocks from western Arizona (Suneson and
Lucchitta, 1983; T. C. Moyer, Vanderbilt Univ., oral
commun., 1987, Sonia Esperanca, Northwestern Univ.,,
written commun., 1987; R, W. Kistler, U.S. Geological
Survey, unpub. data). These data are consistent with an
upper crustal origin for the high-silica rhyolites, although
derivation from less evolved magmas may also have been
involved. :

Low-silica rhyolites {69-75 wt. percent Si0,) of bimodal
fields have small or no Eu anomalies and high Sr contents,
Their St isotopic ratios are similar to those of lower crustal
xenoliths in Colorado Plateau basalts (Gust and Arculus,
1986; M. A. Lanphere, U.S, Geological Survey, unpub.
data). Generally they have lower relative proportions of
normative quartz than high-silica rhyolites. They probably
originated either by lower crustal melting or by assimilation
and fractionation of mantle-derived magmas.

No detailed petrologic studies have been published for
silicic rocks associated with ash-flow fields in Arizona, and
the origin of such rocks is, therefore, poorly understood.
Latta (1983) suggested that ash flows of the Turkey Creek
caldera (Chiricahua Mountains) erupted from a composi-
tionally zoned magma chamber in which crystal-liquid
fractionation was probably the dominant differentiation
process. Latta also suggested that the chemical variability
of the Turkey Canyon ash flows is consistent with the
thermogravitational double-diffusive process of Hildreth
(1979, 1981). Bryan (1988) modeled trace-element and Sr

isotope ratios, and concluded that the latites and rhyolites

Nealey and Sheridan

in the Chiricahua Mountains are related by the fractionation

of a parent magma produced by crustal melting. In any case, :

the origin of these rocks probably is complicated.

.TIME-SPACE—COMPOSITION PATTERNSI OF
POST-LARAMIDE VOLCANIC ROCKS

Volcanic activity occurred repeatedly in Arizona and
northern Mexico over the past 40 Ma. In figure 10 we use
available geochronologic data to show the distribution of
late Cenozoic volcanic rocks in the state. Most of these data

were compiled by Reynolds and others (1987). With but a

few exceptions, we ignored data that Reynolds and others
(1987) considered to be of questionable quality. We
supplemented those data with unpublished data obtained
by the U.S. Geological- Survey (E. H. McKee, U.S.
Geological Survey, written commun., 1982; R. J. Miller,
U.S. Geological Survey, written commun., 1988} and the
University of Arizona (M. Shafiqullah, oral comiun.,
[988). In total, more than 735 K-Ar and fission-track ages
were used in the construction of the plots. Data are
inadequate for several areas, especially the San Carlos.
volcanic field and the surrounding area, and the Mohave:
Mountains field.

The composition of volcanic rocks is essential to
establishing migratory trends. Because of the lack of
detailed mapping in some areas, we show geochronologic
data for the region based on rock type rather petrologic
association. The rock names are those listed by Reynolds
and others (1987) or based on our chemical data, Alkalic'
rocks were plotted as their subalkalic equivalents, ie.,
mugearite = basaltic andesite, benmoreite = andesite, and
trachyte = dacite. Quartz latite and latite associated with
caldera complexes were plotted as dacite. All tuffs were
plotted as rhyolites. These data are displayed on a series of .
maps representing 5- and 10-Ma intervals beginning at 40
Ma (figs. 10A-G).

Volcanic rocks 40-30 Ma (fig. 10A) occur in the Navajo
field, in the Blue Range, Chiricahua Mountains, Roskruge
Mountains, and a few other places in the Basin and Range
province. Volcanism began in the Navajo field with the.
explosive emplacement of potassic mafic to intermediate:
rocks, Most of the activity in the Basin and Range was:
intermediate to silicic in composition. Between 30 and 25
Ma (fig. 10B) intense volcanic activity began in the
southeastern part of the State. Intermediate to silicic tuffs
and lavas were emplaced in the Chiricahua Mountains, :
Roskruge Mountains, Kofa-Castle Dome Mountains, and’
in other parts of the Basin and Range and Transition Zone,
Large basaltic shield volcanoes formed in the Superstition-
Goidfield Mountains in central Arizona, and mafic to
intermediate volcanism continued in the Navajo field
(northeast corner of the state) and began in the Sullivan
Buttes and probably in the Camp Creek area.

Silicic volcanism reached its maximum intensity in
southern Arizona by 25-20 Ma (fig. 10C). Caldera-related
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Figure 10. Maps showing the distribution of volcanic rocks in Arizona and
in northern Sonora, Mexico, for various time intervals. A. 40-30 Ma; B,
30-25 Ma; C. 2520 Ma; D. 20-15 Ma; E. 15-10 Ma; E 10-5 Ma; G, 5-0
Ma. Symbols: open circles = lamprophyres; squares = basalts; dotted
triangles = basaltic andesites; open triangles = andesites; closed triangles
= potassic latites; stars = dacites and rhyolites. Data compiled from
Reynolds and others (1986) and unpublished data of the U.S. Geological
Survey and from the University of Arizona Geochronology Laboratory.
{Continued on next page.)

volcanism occurred in the Superstition-Goldfield, Galiuro,
Chiricahua, Trigo, and Castie Dome-Kofa Mountains and
in the Blue Range ficld during this period, as large ash-flow
sheets were extruded. Late Oligocene to early Miocene
“turkey-track™ latites erupted over a large area of south-
central Arizona from the Buckskins Mountains to the
Tucson Mountains (S. J. Reynolds, oral commun., 1988). In
northwestern Arizona, voluminous basaltic, andesitic, and
dacitic rocks were emplaced in the Mohon and Aquarius
Mountains.

Between 20 and 15 Ma (fig. 10D) calc-alkalic andesite-
rhyolite volcanism associated with calderas and central
vents began to change to bimodal voleanism (basalt-
rhyolite; e.g., Superstition-Goldfield Mountains). A major
silicic ash-flow sheet, the Peach Springs Tuff, was emplaced
in west-central Arizona and adjacent parts of southern
California and Nevada at about I8 Ma., Widespread
basaltic and andesitic activity together with smaller
volumes of silicic volcanism occurred in central and western
Arizona,
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A drastic change in the distribution, style, and composition
of volcanic activity occurred between 15 and 10 Ma, as
mafic volcanism became dominant in the region (fig. 10E),
Silicic activity, which until this time had mainly been
associated with caldera-forming events, decreased in
volume and was restricted to a few small- to intermediate-
size stratovolcanoes and lava domes in the western part of
the state. Intense activity appears to have taken place in the
Castaneda and Black Hills fields.

The main episode of bimodal basalt-rhyolite volcanism
occurred in western Arizona between 10 and 5 Ma (fig,
10F). Bimodal activity took place in the Castaneda Hills,
Kaiser Spring, Mount Hope, and Mount Flovd fields.

“Earlier basalt-dominated volcanism in the Black Hills

migrated onto the margin of the Colorado Plateau to

'. -produce the first activity in the Mormon Mountain and San

Francisco fields. Sodic lamprophyric volcanism began

. during this period in the Hopi Buttes, as less alkaline
- activity took place in the White Mountains. The Hoover

Diam area was also a hot spot during the period 10-5 Ma.

" The main belt of basaltic activity in northern Arizona
continued to migrate onto the Colorado Plateau over the
past 5 m.y. Large areas along the margin of the plateau were
covered by basalts of the San Francisco, Springerville, and

“western Grand Canyon fields. Mafic alkalic volcanism also
continued in the Hopi Buttes, Basaltic volcanism in the San

Francisco and Springerville fields was accompanied by the
emplacement of relatively small volumes of intermediate
rock, and in the case of the San Francisco field, by silicic
rock (fig. 10G). Relatively shori-lived basaltic volcanism
also took place during this period in the Sentinel Plains, San

" Carlos, San Bernardino, and Pinacate fields. Basalt vents
_in the San Bernardino field show several alignments that

suggest that they formed along fractures that were
controlled by the regional stress regitne, and that it changed
through time, Silicic activity in the Basin and Range during
the past 5 m.y. appears to have been limited to a few small
arcas in the Whitlock Mountains, Pinacate field, and the
San Pedro Valley, south of Benson.

Geochronologic and paleomagnetic data for fields along
the margin of the Colorado Plateau indicate that volcanism
migrated at similar rates in al] the fields. Tanaka and others
(1986) have shown that basaltic volcanism in the San
Francisco field initially migrated northeastward then
eastward from about 5 Ma to the present. They calculated
amean migration rate for the period prior to the Matuyama
Reversed-Polarity Chronozone (2.48 Ma) of 1.2 ¢cm/yr.
Since the Matuyama reversal the rate has been approximately
3 cm/yr.,

Migration rates have also been calculated for the Western
Grand Canyon and the Springerville fields. Best and
Brimhall (1974) calculated that volcanism migrated
castward across the Western Grand Canyon field at a rate
of approximately | cm/yr. Chris Condit (written commun.,
1987} calculated that volcanism migrated eastward at a rate
of 1.5-2em/ year in the Springerville field over the last 3 m.y.
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Figure 11. Geochronological data for the five petrologic groups for selected
post-Laramide fields in Arizona and in northern Sonora, Mexico, Data
compiled from Reynolds and others {1986). Numbers designate fields listed
in table 1.

The consistent castward migration of late Cenozoic
volcanism near the edge of the Colorado Plateau is thought
to be related to westward motion of the North American
plate (Tanaka and others, 1936).

In conclusion, post-Laramide volcanism in Arizona
produced rocks with a wide range in composition, Early
activity resulted mainly in lamprophyric activity in the
interior of the Colorado Plateau, latitic volcanism in the
Transition Zone, and andesite-rhyolite-dominated volcanism
in the Basin and Range province and along the edge of the
Transition Zone (fig. 11). Lamprophyric volcanism on the
Colorado Plateau ended about 19 Ma but later recurred
between 8 and 4 Ma. Latite volcanism may have began as
early as 28 Ma and ended about 19 Ma, and was limited to
the Transition Zone, Andesite-rhyolite-dominated volcanism
became intense about 30 Ma and ceased about 15 Ma. K
resulted in widespread ash-flow sheets in southern, central,
and northwestern Arizona and adjacent parts of southeastern
California and southern Nevada. Bimodal (basait-rhyolite)
volcanism began in the Basin and Range province (western
Arizona) about 20 Ma and migrated onto the Colorado
Plateau and ceased about 2 Ma. In the younger basalt
terranes, basalt-dominated volcanism began at least by 14
Ma and continued on the Colorado Plateau and in the Basin
and Range province almost to the present.

Note added in final proof: Silicic lava domes have
recently been observed in the San Carlos volcanic field, The
San Carlos field is now considered io be a bimodal basait-
rhyolite field.
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