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PROTEROZOIC ANOROGENIC GRANITES -
OF THE SOUTHWESTERN UNITED STATES
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J. Lawford Anderson
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Los Angeles, California 90089

ABSTRACT

The mountain ranges of Arizona and adjacent California and Nevada contain large areas underiain by Proterazoic anorogenic granites
comprising the southwesternmost poriion of the [.4-10 1.5-Ga-old transcontinental belt. Of these, a biotite 1 muscovite, monazite-bearing
suite resides in central and southeastern Arizana as part of a peraluminous segment that extends through New Mexicu,into the Colorado
Front Range. This group is bordered on the south {southern Arizona to Sonora) and west (Colorado River region) by a marginally
peraluminous to metaluminous granitic suite bearing biotite-sphene 1= hornblende, fluorite.

All of these 1.4-Ga-aged granites are distinctly mare potassic, iron-enriched (relative to Mg), and depleted in Ca, Mg, and Srin contrast
to most o]der_orogemc granitoids that make up much of the host terrane. In general, the large-ion ]ithophiie-clcr;aent ’em-iched character
of these pranites is a consequence of limited melting of a water-deficient crustal source at depths greater than 25 to 37 km. For the
peraluminous anorogenic suite, this contrast is less extreme, perhaps resulting from alarger degree of melting as a conseguence of a greater
metasedimentary component and water in its crustal source,

The anorogenic granitic magmas intruded into the upper crust at depths of § to 17 km or shallower at temperatures up to 790°C,

The most dramatic variation in the crystallization-intensive parameters resides in the oxygen fugaeity, which spans three orders of .

magnitude. Relqtive to other anorogenic suites, all of the magmas crystallized at elevated levels of £, as reflected in their assignment
to the anorogenic magnetite series. Yet a regionally significant rise in primary fO, levels, unmatched elsewhere in the transcontinental
belt,_eccurs for plutons in western Arizona, including the Holy Moses and Hualapai granites. The most extreme case is the Hualapai
granite whose biotite Fe-Fe + Mg ratios drop, due to high f0, to a low of 0.27 down from more typical levels of (.54 to 0.75. Such
extreme variations in primary levels of oxygen fugacity must be an indirect imprint of regional changes of the level of oxidation of the
lower crust. This area of western Arizona is in proximity to the eastern limit of the 1.4-Ga biotite £ hornblende granites, a boundary
that is also approximately equivalent to major changes in the Nd isotopic composition of these granites and the meta;norphic and
magmatic character of the older crogenic terranes,

On a global scale, the'crust—forming orogenies ended by 1.6 Ga and the continents entered a long-lived era dominated by localized
extension and transcontinental intrusion of anorogenic potassic rapakivi granite, mafic dike swarms, charnockite, and anorthosite
Perhaps plate consumption became intraoceanic during this time. The profuse and widespread nature of the igneo,us activity has m;
Phanerozoic analogue and is considered to be unique to the Proterozoic. A crustal overturn maodel ties the magmatism to heating within
alargely updcpleted subcontinental mantle, the eventual rise of mantle plumes, and the transfer of heat into the youthful, undifferentiated
Proterozoic crust. Subsequent melting and rise of ‘potassic granitic magmas from the lower crust leads to con’siderable crustal

feorganization, a process that would continue. until both the mantle and crust reached a stable configuration.

INTRODUCTION

After 300 million years of orogenesis, the Proterozoic
North American craton entered a new era of tectonic
quiescence beginning about 1.6 Ga ago. This preceding
period of deformation and igneous activity was a time of
principal continental growth by episodic crust formation
represented by south- to southwestward-younging orogenic
terranes, which range in age from 1.82 to 1.90 Ga (Penokean

-orogeny) and L.61 to 1.68 Ga (Mazatzal orogeny). The

oldest members of these orogenic belts are almost always
supracrustal metasedimentary and mafic to felsic metavolcanic
rocks intruded by variably foliated granitoid masses, which
usually have a calc-alkaline composition. For the next 600
million years, this newly formed Proterozoic crust, untike
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the older Archean, continued to undergo considerable
moditication involving deep-seated crustal melting, leading
to widespread anorogenic intrusion of epizonal, potassium-
rich granites into the upper crust. For many areas, the
presence of associated mafic intrusions, including large
volumes of older gabbro to anorthosite and swarms of
diabase, indicates that this thermal disturbance was
probably rooted in the mantle. To date, three principal
periods of anorogenic igneous activity have been defined:
(1) 1.41 to 1.49 Ga, (2) 1.34 to 1.40 Ga, and (3) 1.0 to 1.2
Ga. By far, the first was most profound and constitutes over
60 complexes forming a transcontinental belt (fig. 1) over
1,000 km wide, extending from Labrador to southern
California (see J. L. Anderson, 1983, for a more comprehensive
review and appropriate references).
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Figure 1. Distribution of Proterozoic anorogenic granite complexes of North America. Modified from Anderson (1983).

PROTEROZOIC ANOROGENIC GRANITES

The Precambrian terranes of Arizona and adjacent
Nevada and California contain vast areas underlain by
nonfoliated granitic batholiths. Although some of these
represent late kinematic orogenic intrusions (ca, 1.65 Ga),
most are part of the anorogenic transcontinental belt. Silver
(1968) was the first to recognize their existence in the
southwestern United States and their regional context.
Twenty-two separate intrusions are listed in table | and
depicted on a regional map in figure 2. From their unique
textural characteristics, however, many others have been
inferred to exist, but have been msufficiently studied to
merit inclusion at this time.

A principal attribute of these granites is the K-feldspar
megacrystic or porphyritic nature, Previous workers,
including Volborth (1962, 1973), Silver and others (1981),
and Kwok (1983) have acknowledged the affinity of these
rocks to rapakivi granites. This assignment is appropriate.
Although well-developed rapakivi texture has been noted
only for portions of the Gold Butte granite, the original
usage of this term by Finnish geologists refers not to a
texture but a suite of anorogenic granites that possess a
number of attributes, including: (1) an epizonal nature of
intrusion {discordant, postkinematic plutons that are often
circular in outline), (2} a preponderance of K-feldspar
relative to plagioclase, (3) low water content (expressed in
the form of late hydrous silicate crystallization and lack of
pegmatites), and (4} enrichment in fluorine, certain large-
ion lithophile elements {LILE), including K, Rb, Ba, REE,
Th, Nb, and U, and Fe relative to Mg. As described by
Vorma {1971), rapakivi texture is only well developed in the
wiborgite variety of rapakivi. Other textural types include
pyterlitic (seriate with ovoidal K-feldspar), even-grained,
and porphyritic. Although all of these textural types are
represented in the southwestern United States, the
porphyritic variety (fig. 3) is by far the most common,

Rapakivi in Finnish means “rottenstone.” In his original
description of the Ruin granite, Ransome (1903, p. 74)
noted that the rock is “generally decomposed” forming
“gentle slopes . . . often covered with what might be termed
granite crumbs-—a coarse angular sand consisting of quartz
crystals, and fragments of pinkish feldspar, and flakes of
biotite.” Similarly disintegrated outcrops of the 1.49-Ga
Wolf River batholith of Wisconsin have long been mined
as a sand and gravel resource, On U, S, Geological Survey
topographic maps, these sites are appropriately designated
as “rottenstone quarries.”

The intrusions composing the transcontinental belt range
over 80 Ma in age. The older complexes occur in the
midcontinent with ages of about 1.49 Ga. Systematic
younging occurs to the southwest (see references in J. L.
Anderson, 1983). In this region, all appear younger than
1.44 Ga with some of the youngest ages (1.40 to 1.41 Ga,
J. Wright, 1984, personal commun.) occurring in western
Arizona and adjacent California.

Other than the Parker Dam and Bowmans Wash
plutons, none of the granites included in this paper have
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received a published detailed petrologic study of mineralogical
and compositional variations. Yet there is a variety of
general geologic to geochromologic information that is
helpful (see references in table 1). It is hoped that this review
and preliminary analysis will set the stage for further study
of this remarkable plutonic episode.

PETROGRAPHIC VARIATIONS

One objective of this work is to seek out any systematic
regional variations within this suite of granite intrusions.
Specific descriptions and general references are given in
table 1. As depicted in figure 4, most range in composition
from monzogranite to syenogranite. The exceptions are the
Centinental granodionite, the Holy Moses quartz monzonite,
and the Bowmans Wash quartz monzodiorite,

Although the K-feldspar is megacrystic in most of these
granites, petrographic analysis reveals that this mineral
phase poikilitically enclosed and began to crystallize after
that of plagioclase and usually quartz in every specimen
studied. Toward the K-feldspar rims, other phases also
occur as inclusions, including Fe-Ti oxides, apatite, zircon,
allanite, and hydrous silicates. In addition, biotite,
commonly with muscovite or hornblende, is uniformly late
in crystallization, after that of the feldspars, quartz, and
most of the accessory phases. Hence, the hydrous silicate
minerals are not visibly prominent, but rather anhedral and
interstitial to the fundamental mineral framework of the
host rock. Such textural features are indicative of the
refative dryness of the magma system, a feature also
consistent with the paucity of pegmatites and aplites and
general lack of hydrothermal contact effects, Exceptions to
these generalizations include the Marble, Fort Huachuca,
and Oracle granites, which contain euhedral and visibly

prominent biotites, Moreover, pegmatites are less rare in
the central Arizona granites and are notably common in a
few, including the Oracle and Lawler Peak granites.

Accessory phases include fluorapatite, zircon, allanite,
and Fe-Ti oxides. The mineralogy of the latter is significant.
Ishihara (1977) noted that anorogenic granites commonly
comprise an ilmenite series” where magnetite is low in
abundance to absent. The transcontinental anorogenic belt
is an exception to this generalization. To date, only the 1.49-
Ga Wolf River batholith (J. L. Anderson, 1980, 1987) has
been shown to be of the ilmenite series. Elsewhere, including
the Southwest, the granites belong to an “anorogenic
magnetite series,” a {eature attributable to crystallization
under an elevated level of oxygen fugacity. This important
aspect is developed further in later sections of this paper.

Despite these general textural and mineralogic attributes,
significant variations exist in the hydrous-phase mineralogy
from which follow other differences in accessory mineralogy
and general chemical compositional features. A large
number of these granites are moderately peraluminous and
contain biotite, often with muscovite, and occasionally
garnet (fig. 2). All reside in central to southeastern Arizona,
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Figure 2. Precambrian outcrop map of Arizona and adjacent California and Nevada. Stippled areas depict granitic intrusions. Numbered

localities are of [.40- to 1.45-Ga granites described in this paper.

including the Sierra Estrella, the Ak-Chin, the Lawler Peak,
the Delis, the Ruin, the Oracle, the Stockion Pass, and the
Tungsten King granites among others. Together, these
granites represent a portion of a peraluminous segment of
the transcontinental anorogenic belt that presumably
extends up through New Mexico into the Colorado Front
Range (J. L. Anderson, 1984; J. L. Anderson and Thomas,
1985), The principal rock type is a porphyritic biotite
granite, yet in most cases, muscovite appears subordinate
to biotite either throughout the plutonic mass orin the more
evolved interior phases. Notably, these granites are not
strongly peraluminous, and only the Lawler Peak granite
(C. A. Anderson and others, 1955) has a variant that
contains muscovite as the sole hydrous phase. Hornblende
in these plutons appears to be largely nonexistent, Part of

the Ruin and Oracle (Picacho and Tortolita Mountains)
granites reportedly contain hornblende (Silver and others,

1980; Banks, 1980), but no hornblende-bearing variants
were found in this study, and in general the plutons contain
biotite plus subordinate muscovite. :

Geographically separate from these moderately peralum-
inous granites are widespread metaluminous to marginally '

metaluminous or peraluminous plutons. Residing in
southern Arizona, the Fort Huachuca granite and the

Continental granodiorite contain biotite plus large

distinctive sphene. The latter body also contains occasional
amounts of hornblende (Drewes, 1976). Further to the
south, the Cananea granite of northern Sonora (T. H.
Anderson and Silver, 1977) is apparently a continuation of
this same granite type. Mineralogically similar rocks may

PROTEROZOIC ANOROGENIC GRANITES
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Figure 3. Photographs of representative textural types: A. Gold Butte granite; B. Beer Bottle Pass granite; C. Hualapai granite; D, Parker Dam granite.
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Figure 3, continued. E. Ruin granite; F, Oracle granite; G. Continental granodiorite; H. Fort Huachuca granite,
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Figure 4. Modal composition in terms of quartz, alkali feldspar, and plagioclase. Sources of data given in table 1.

also comprise inferred 1.4-Ga granites of the Papago Indian
Reservation near Ajo, Arizona (M. Grubensky, 1984,
personal commun., 1984). To the west, the numerous 1.4~
Ga old granites exposed in vicinity of the Colorado River
likewise contain only one mica, biotite, plus sphene.
Coexisting hornblende occurs in the mafic phases of most,
including the Gold Butte, the Beer Bottle Pass, the
Newberry, the Holy Moses, the Hualapai, the Bowmans
Wash, and the Parker Dam granites. With the exception of
a few pegmatites, nowhere are there large bodies of two-
mica or muscovite granite, which is a fundamental consrast
with 1.4-Ga granites to the east.

Systematic differences between the biotite -+ muscovite
and biotite £ hornblende granites also include the accessory
mineralogy. Sphene is common only in the more metaluminous
rocks and is usually absent as a primary phase in the
peraluminous biotite + muscovite granites of Arizona. In
its place, monazite is a common accessory mineral (see table
1) as is also the case for similar two-mica granites of
Colorado (Anderson and Thomas, 1985). In addition,
xenotime occurs in the Ak-Chin and Lawler Peak granites.
Although fluorite is a typical late magmatic phase in many
anorogenic granites, it is usually absent in the biotite +
muscovite granites. The Lawler Peak and the Dells plutons

are exceptions; however, both are unusuaily very evolved,
highly differentiated granites enriched in many incompatible
clements and contain an uncommon assemblage of
complementary accessory phases. Fluorite is more
common in the Colorado River occurrences including the
Gold Butte, Marble, Holy Moses, and Hualapai granites.

COMPOSITIONAL FEATURES .

It is important to address the compositional differences
between these two contrasting suites of 1.4-Ga granites of
the Southwest, but also relevant is how both differ from the
remainder of the transcontinental belt and from the older,
usually foliated, granitoids that make up a significant
portion of their host terrane. By coupling compositional
with isotopic constraints, models of the contrasting sources
for magma genesis can be formulated,

Like many A-type granites (Wones, 1979), most of these
1.4-Ga granites are potassic, subalkalic, and iron rich
(relative to magnesium). Herein lies their fundamental
difference with the older Proterozoic granitoids. The older
granites arc usually calc-alkaline, as evidenced by their
greater abundance of Mg, Ca, Na, and Sr and lower Fe/ Mg
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and K (fig. 5), all relative to silica. The 1.4-Ga granites are
also enriched in Ti, which from the data at hand (North
America, Greenland, and Baltic Shields} seems to be
another common attribute of anorogenic potassic granites.

Although the younger Proterozoic granites exhibit a
clear compositional affinity to most A-type granites, the
biotite + muscovite suite has lower potassium, higher
magnesium, and a lower Fe-Mg ratio (table 2, fig. 5), the
latter parameter having some overlap with the calc-atkaline
granitoids of the older orogenic suites. They are more
peraluminous as shown by higher A-CNK ratios (ratio of
molecular Al,0s to CaO + NayO + K20) due principally to
lower potassium (table 2). The rocks are also lower in F, Ba,
and probably most LIL elements (e.g., REE) if they follow
trends of other two-mica, anorogenic suites {Anderson,
1983). Recently completed work on the 1.4-Ga two-mica,
sillimanite-bearing Silver Plume and St. Vrain batholiths of

Colorado (J. L. Anderson, 1984; J. L. Anderson and

Thomas, 1983) indicate a general similarity to these two-
mica, anorogenic plutons of Arizona.

Space considerations do not allow a complete perusal of
individual variations amongst the numerous anorogenic
intrusions in this region, Most can be determined from the
data depicted in figure 5 and table 2. Seventy rock analyses
were utilized in this study (see Appendix), 52 of which were
recently completed by the author or his students (Podruski,
1979; Krass, 1980; Kwok, 1983). In addition, 14 unpublished
analyses from the Pinaleno Mountains were provided by
Thorman (1984, written commun.). Following the recom-
mendation of S. Keith (1984, personal commun,}, omitted
in this compilation are data from altered and (or) highly
deformed rocks, including about half of the available
analyses of the Oracle granite, which had experienced a
mid-Tertiary mylonitization and exhibited enrichment in
sodium and loss of potassium. Although some of the data
for the Continental granodiorite were also excluded, the
acceptable analyses exhibit some additional variability
which is supportive of the conclusion by Silver (1978) that
a portion of the Continental has an age of 1,65 Ga, not 1.44
Ga.

A few plutons merit particular mention. As described by
Kwok (1983) and Kwok and Anderson (1983), the
Hualapai granite and Gold Butte quartz monzonite are
unusual in that both are enriched in alkalies, such that their
total K + Na carries them into the alkalic field of Irvine and
Baragar (1971). They are not peralkaline, however, just
close. For the Hualapai, this compositional feature is
enhanced by feldspar accumulation, Similar segregations
have been mentioned for the Lawler Peak granite (C. A.
Anderson and others, 1955). Consistent with feldspar
accurnulation, both the Gold Butte and the Hualapai
granites are enriched in Ba, the latter also being enriched in
ST

Certain granites are markedly evolved, representing
some form of differentiation from an unexposed parent
rock, The Dells and Lawler Peak are siliceous rocks

J. L. Anderson

enriched in Rb (and other incompatible elements) and
depleted in Ba and Sr. Similar attributes are likewise
notable for the Marble, the Ruin, the Sierra Estrella
(essentially equivalent chemistry to the Ruin granite), and
the Fort Huachuca granites. The Parker Dam granite of the
Whipple Mountains exhibits a compositional lineage from
64.7 to 70,0 percent Si0,. Modeling of that data trend is
compatible with fractionation of two feldspars, biotite, and
hornblende, the latter mineral apparently responsible for
driving the more evolved portion of the Parker Dam granite
to a marginally peraluminous composition. The Bowmans
Wash quartz monzodiorite, intruded by the Parker Dam
granite, is the most mafic of all 1.4-Ga granitoids considered
in this survey. Although the pluton lacks pyroxene, its
chemistry (low silica, high alkalies) is similar to that of
charnockites found elsewhere in the transcontinental belt.
Similar plutons, reportedly bearing pyroxene, oceur in the
Signal area of western Arizona (B. Bryant, personal
commun,, 1985).

DETAILED MINERALOGY

It was observed above that the major mineralogy of the
1.4-Ga granites of the southwestern United States varies
from biotite = muscovite to biotite-sphene + hornblende,
that all hydrous phases are usually late in crystallization,
and that the Fe-Ti oxide mineralogy constitutes a magnetite
series. The latter two observations imply low water content
and an elevated oxygen fugacity. Thermobarometric
calculations are limited for granitic rocks, owing to the
underdetermined nature of the phase equilibria. Yet some

applications, including two feldspar, biotite-feldspar-

magnetite, and muscovite-liquid equilibria, provide some
insights. These aspects are developed further below
following evaluation of specific mineral composition
variations.

Feldspars .

The general range of plagioclase composition is given in
table 1. For the Colorado River region granites, the feldspar
is essentially calcic oligoclase with a typical range of Ang
to Any. The Newberry, Holy Moses, and Bowmans Wash

granites, all less siliceous than the norm, have slightly more -

calcic plagioclase, up to Ang. The Hualapai plagioclase is
the most sodic, ranging Anis to Ana.
Due to the lack of a coexisting calcic phase {c.g.,

hornblende or sphene), the plagioclase in the peraluminous :

granites of central and southern Arizona is more calcic,
although the normative plagioclase is not, with typical
ranges of Ans to Ang. For the Ruin, Sierra Estrella,
Oracle, and Fort Huachuca granites, a second generation
of plagioclase, having compositions of Any to Any, occurs
as rims adjacent to K-feldspar or as fine-grained crystals.
These are presumed to be subsolidus. Primary sodic
plagioclase (Anys to Anyq) occurs only in the more evolved
granites, including the Ak-Chin, the Lawler Peak, and the
Dells.
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Figure 5. Major- and trace-clement composition and comparison to orogenic granitoids of Arizona. Symbols keyed to figure 4. Data for older granitoids from Babcock

and others (1979), Krieger (1965), C. A. Anderson and others (1971), and Cooper and Silver (1964). Other data sources given in table 1.
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TABLE 2, Average Major and Trace Element Analyses

J. L. Anderson

Gold Beer Davis Holy Bowmans  Parker
Pluton Butte Bottle Newberry Dam Dead Homer Marble Moses Hualapai Wash Dam
No.! 6 3 2 2 1 1 5 3 3 9 31
8i0, 68.86 66.81 64.62 68.43 73.7t 70.53 68.78 67.74 68.70 62,17 67.11
TiO: 15 102 1.30 5 19 40 .61 .89 41 147 86
AlLO; 14.26 14.36 13.98 13.89 13.97 14.45 13.62 12.98 14.31 13.62 14.00
FeO? 377 4.87 6.03 4.87 .90 2.18 4.02 6.28 249 797 4.95
MgO 64 67 147 91 16 A% . 60 49 1.58 96
MnO 07 .098 .104 052 036 027 062 075 040 126 08
Ca0 1.92 274 3.46 2.09 692 1.29 1.92 2.65 1.24 3.96 234
Na:0 294 2.69 27 2.77 3.83 2381 2,67 2,68 3.56 2.77 2.69
K,0 5.51 4.83 3.86 498 5.44 6.29 5.35 4.49 6.73 4.18 5.46
LOI 67 1.16 71 .58 61 1.32 55 76 1.17 1.03
TOTAL 99.33 98.02 98.75 99.48 99.41 99.08 99.06 99.02 98.74 99.02 99.55
AJCNK3 994 981 931 1012 1.032 1.049 .998 921 930 836 952
FeQ/FeO+MgO 855 879 B804 843 850 A16 .850 913 .836 .836 838
K:0/Na,O 1.87 1.79 1.40 1.34 142 2.24 204 170 1.89 1.51 193
K:0+Na.O 8.45 7.52 6.63 715 9.27 9,16~ 8.02 7.18 10.29 6.95 8.01
Rb* 276 191 169 244 89.9 163 . 422 183 220 . 138 233
Sr 238 35 278 166 79.8 209 125 132 642 274 186
Ba 2307 1315 1062 814 334 893 678 1038 1300 1392 F11E
AnfAb+An’ .255 347 365 300 .091 202 275 295 .089 334 .282
Refs 13, 14, 33 33 14,33 i4 14 14 14,33 14, 33 18-20 18-20 18-20

Lawler Sierra Stockton Contin- Fort

Pluton Peak Dells Estrella  Ak-Chin Ruin Oracle Pass Ladybug ental Huachuca
No.! 1 2 1 2 3 6 9 5 6 2
Si0: 75.33 7591 70.15 74.04 706.85 76.02 72.80 68.92 66.78 65.44
Ti0, 22 03 .33 25 41 64 27 62 .19 85
AlLOs 12,77 13.40 14.38 13.30 13.87 14.14 13.44 13.78 13.87 14.79
FeO’ [.35 N 2.36 127 251 3192 1.74 3.48 4.85 4.69
MgO 42 .08 .66 M .73 92 A48 .66 1.17 1.40
MnO 07 03 082 075 08 A0 .04 A1 A2
Cal 107 56 211 1.06 1.82 2.05 .88 2.03 2.40 1.65
Na;0 3.09 4.17 3.20 3.08 298 2.50 3.09 276 298 2.86
K:0 4.31 4.52 4.35 529 473 4.20 4.30 514 4.44 5.54
LOt 42 a7 1.06 14 85 £1 - 111
TOTAL 99.05 99.20 98.12 98.68 99.04 99.63 98.58 98.45 98.50 97.34
AJCNK? 1.092 1:060 [.002 1.047 1.040 1.08% 1132 999 986 1.083
FeO/FeO+MgO 763 936 781 804 75 810 784 841 806 766
K;0/Na;O 1.39 1.08 1.52 1.72 1,59 1.45 L.55 1.86 - 1.49 1.94
K.C+Nax,O 7.40 8.69 8.05 8.37 7 T.10 7.89 790 742 8.40 .
R 339 294 190" 339 276 i85 nd nd 209 353
Sr 103 110 140 57.6 136 165 nd nd 215 138
Ba 280 25 654 279 491 786 nd nd 1379 755
An/Ab+An’ 161 069 267 159 253 282 18 288 286 242
Ref 6 6,23 33 33 6,33 25,33 29 29 31,33 33

tNurnber of analyses averaged

2All Fe As FeO

3Molecular proportions of Al,Os/(CaO+Na;0+K,0)
4Rb, Sr, Ba in ppm
SNormative An and Ab
$References as in Table |
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Figure 6. Plot of Ba versus Sr. Symbols keyed to figure 4,

The perthitic nature of the K-feldspar required an
integrating form of analysis to attain some idea of the
primary composition. The Hualapai granite contains the
most sodic alkali feldspars, ranging Orss to Orq, which is
appropriate from tie-line considerations because the
coexisting plagioclase is also sodic. Most compositions fell
in the range of Orss to Org. Only the Newberry, Ak-Chin,
and Oracle had more potassic feldspars (range Orss to Org),
which from subsequent thermometry calculations indicates
partial subsolidus reequilibration. Expectedly, host
compositions of the perthites are quite potassic, ranging
from Org to Oro.

Biotite

Biotite compositions are given in table 3 and figure 7. A
significant variation occurs in the aluminous nature of the
biotite reflecting the rock composition change from
metaluminous (biotite + hornblende) to marginally
peraluminous (biotite only) to more strongly peraluminous
{two-mica). Hence the more Al-rich biotites occur in the
Ak-Chin, Ruin, Sierra Estrella, and Oracle granites,

However, the most profound range in biotite composition
lies in the Fe-Fet+Mg ratio, This is unusuat, Most ilmenite-
series, anorogenic granites have iron-rich biotites with Fe/
FetMg from 0.70 to 0.99 (J. L. Anderson, 1983), due
principally to 2 low f0, or iron-rich bulk compesition,
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Figure 7. Composition of biotite in terms of Fe/Fe+Mg and total Al (22
oxygens). Sources of data given in table 3. Symbols keyed to figure 4.

depending on whether or not the mica equilibrated with
magnetite. The Fe-Mg ratio of biotite coexisting with K-
feldspar and magnetite varies as a function of T, f0,, and
JH,0 (Wones, 1981). The latter two parameters have
competing effects; both high fO, and low fH20 drive biotite
to Mgricher compositions. The most iron rich biotite
occurs in the Marble granite (Fe/Fet+Mg = 0.72 to 0.75).
Biotite from most of the granites have ratios between 0.51
and 0.66. The lowest is in the Holy Moses and the Hualapai
granites, the latter have biotite Fe-Fe+Mg ratios as low as
0.27. This is a striking Mg-rich composition that is totally
independent of the relatively iron rich composition of the
rock. In keeping with its phlogopitic nature, this biotite is
very pale green, unlike the brownish green to reddish brown
of biotite from the other plutons. The biotites in the Holy
Moses and the Hualapai granites are also cnriched in
fluorine (up to 3.4 wt% F), indicative of the presence of
fluorite in these rocks. Biotite in fluorite-absent rocks has
a lower, variable fluorine content, usually less than 1.6 wt%,.

Amphibole

Hornblende occurs as a primary phase in the Parker
Dam, Bowmans Wash, Newberry, Holy Moses, and
Hualapai granites. Although late, it generally preceded the
initial crystallization of biotite. Its compositional variation
complements that of the coexisting biotite, although it
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Figure 8. Normative quartz, albite, and orthoclase compositon and comparison to experimental minimum melt data. Symbols keyed to figure

4.

Parker Dam and Bowmans Wash granites, the ilmenite is
commonly altered to aferropseudobrookite-pseudobrookite
composition,

" PHYSICAL CONDITIONS

Depth of Magma Generation
Barometric calculations for rocks of granitic composition
are crude at best. One approach is comparison to water-
saturated minima in the granite system. If sufficient data
exist to constrain the parental or most primitive composition,
an estimate of the depth of melting can be inferred if the
magma has experienced minimal changes in composition
since melt generation. Such applications for plutonic rocks
are fraught with assumptions including whether the rock
represents minimum or near minimum melt. However, the
effects of subsaturation water contents are minimized
because the lowering of Pr,o relative to Piow appears to shift
minimum mefts in a path subparallel to the iscbars.
Fluorine is more problematic (shifts melts toward the Ab
corner in the Qz-Ab-Or system} but most of the more
primitive members are not-particularly fluorine rich (except
the Holy Moses and Hualapai granites). Despite these
considerations, most of the Proterozoic anorogenic granites
of the North American continent fall near the 7 to 10 kb
minima, implying a middie to lower crustal source (J. L.
Anderson, 1983). As depicted in figure 8 the granites of the

southwestern United States vield a similar result, yet 4

general separation of data for the peraluminous and
metaluminous granites suggests that the latter plutons may
have originated at a slightly deeper crustal level. Several
samples have compositions that fall outside the principal
range which can be accounted for by differentiation (Dells,
Lawler Peak, portions of the Oracle granites) or alkali
feldspar accumulation (Parker Dam, Hualapai, Gold
Butte, Oracle, and Fort Huachuca granites).

Depth of Emplacement

Barometric estimates for the level of empIacement of
these plutons are not yet definitive. The epizonal nature of
the individual intrusions indicate that shallow crust depths
would be reasonable. However, none of these magma
systems was emplaced sufficiently shallow to yield eruptive
centers. J. L. Anderson and Rowley (1981) have argued
that plutonic muscovite, corrected for titaniferous and
celadonitic components, lowers the minimum pressure
(down from 4.0 kb) at which this phase can coexist with
granitic liquid. For the muscovite-bearing plutons (Oracle,
Ruin, Sierra Estrella, Ak-Chin, and Lawler Peak), a
preliminary minimum estimate is 2.7 to 3.2 kb.

The composition of hornblende apparently is also depth
dependent, and Hammarstrom and Zen (1985) have
suggested that total Al (atoms per 23 oxygens) increases

PROTEROZOIC ANOROGENIC GRANITES

with pressure according to the expression
Pikb) = 5.04 (Al" + Al") —3.89

This barometer has special application to the hornblende-
bearing piutons of the Colorado River region (Parker Dam,
Bowmans Wash, Newberry, Holy Moses, and Hualapai),
which have total Al ranging from 1.37 to 1.98 atoms (table
4). The corresponding pressure estimates range from 3 to
6 kB, which is too large a spread to be geologically
reasonable. However, analysis of this data set (table 4} and
that for many other hornblendes in granitic rocks (E.
Young, persenal commun., 1985; J. 1. Anderson, unpublished
data), show a positive Fe/ Mg effect on total Al. Hence,
calculated pressures on more iron rich amphiboles should
lead to erroneously high values. The Hualapai hornblendes
have the most intermediate Fe/ Mg (Fe/Fet+Mg=0.52) and
the calculated pressure of 3.5 kb is perhaps the most
reasonable,

. Independent estimates of pressure can be derived from
barometric calculations for host rock mineral assemblages,

_whether of contact metamorphism or preceding regional

metamorphism. Couch (1981) has calculated 3.0 to 3.7 kb
(11.1 to 13.7 km) for a garnet-biotite-cordierite-sillimanite-
feldspar assemblage in a contact aurecle adjacent to a
suspected 1.4-Ga-old pluton in the eastern McDowell
Mountains. More recently, Thomas and other (in press)
have evaluated the circa 1.7-Ga regional metamorphic

-conditions in high amphibolite to granulite terranes of the

Colorado River region. Barometer calculations range from
2.2 to 4.5 kb (8.1 to 16.7 km), which serve as a minimum
pressure (depth) estimate being that they characterize
crustal levels some 300 Ma prior to intrusion of the
anorogenic event.

Crystallization Temperature
Using 3 kb as a minimur pressure, feldspar thermometry
calculations (formulation of Hazelton and others, 1982)

-resulted in the following minimum temperatures: Hualapai:

732-794°C, Marble: 616-759°C, Gold Butte: 615-632°C,
Bowmans Wash: 625-659°C; Parker Dam: 616-661°C;
Dead Mountains; 606-627°C; Ruin: 701-703°C; Fort
Huachuca; 649-725°C; and Sierra Estrella: 622-647°C. The
Ak-Chin, Oracle, and Newberry granites yielded lower
results (540-590°C), perhaps the result of reequilibration.
Overall, the metaluminous granites appear to have
crystallized at higher temperatures. The lower temperatures
for the peraluminous suite may reflect higher water contents
as previously inferred from the fact that some, not all, are
associated with late-stage pegmatites.

Oxygen Fugacity

In general, the above temperature estimates are fairly
uniform. However, the most dramatic intensive parameter
variation rests with the level of oxygen fugacity (f0), which
appears to range over three magnitudes. Previously

. described is the Fe/Fe+Mg of biotite which ranges from

0.76 (Marble) to 0.28 (Hualapai). This range of fO, far

227
40— BIOX HB BiID+MUSC BIO
- + SPH,HB
30 -
2 B + FLYORITE
F 20k
L FLUQRINE
1.0 Q
r
0.0 k-
Al ATOMS >
.Z_u O
N\ +MUSCOVITE =
.
08 '— " R”
+ SPHENE, 2
0.7 HORNBLENDE %
(]
Ecn » m
=2
T 086 A
L?_’ .
E 05 i
0.4 VERY HIGH f0» OR LOW fHa0
B < 5
03k g . % ] g
FX 8 o 2 |
¥ £5%%F g sE 0 z
o oY 5 - =3 Fil -
i 5333 3% Wil 2 x
= 20 T 3 Baz X 2

Figure 9. Regional variations in biotite composition from California to
southeastern Arizona. Transect depicted in figure 2,

surpasses the effect of variable fH,O and must relate to a
marked increase in f03, geographically coincident with the
Hualapai Mountains region. Figure 9 depicts the compositional
change of biotite on a generally northwest-southeast
transect across Arizona into eastern California. The
changes in alumina and fluorine are depicted, but most
important are the relative proportions of Fe to Mg.

Assuming a maximum Pr,o range of 2 to 4 kb, the
calculated biotite stability contours are shown in figure 10.
Biotite of the Marble granite apparently crystallized under
the more reducing conditions (107" bars at 700° C; near the
QFM bauffer). Most of the other pranites appear to have
crystallized with fO; In the range of 107** to 10" bars.
The fO, for the Holy Moses granite runs higher, and that
for the Hualapai granite indicates crystallization under even
more oxidizing conditions, refative to plutons both to the
east and west. At 700°C, the estimate is 10** bars, As
noted by Kwok (1983) and Kwok and Anderson (1983), this
granite crystallized under unusually high oxidizing
conditions, unmatched elsewhere in the iranscontinental
belt. Although the level of oxidation can change during rise
and emplacement of a granitic magma, the uniformity of
existing data for the Hualapai granite indicates that this fO,
is an imprint of a generously oxidized source. It is notable
that the pluton generates a significant positive anomaly on
the aeromagnetic map of Arizona (Sauck and Sumner,
1970).
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Figure 10. Contours of biotite stability at Pu,o of 3 kb, Error brackets for
a Pu,o of 2 and 4 kitobars given for uppermost and lowermost contours.
MH = magnetite-hematite buffer. QFM = quartz-fayalite-magnetite buffer.

The magnetite and ilmenite of all rocks studied have
compositions too near their ideal end-members to reflect
magmatic conditions. As is common for plutonic rocks
(Lindsley, 1976), subsolidus reequilibration during slow
cooling apparently led to a simultaneous oxidation of the
magnetite and reduction of iimenite involving the exchange
mechanism Fe*+Ti = 2Fe* (without necessary gain or loss
of oxygen). This is a consequence of a T-f0; cooling path
that bisects the nonparallel stability isopleths for the two
phases.

SOURCE MATERIAL

The previous section outlined how the general major-
element composition of these granites is consistent with
partial melting of a crustal source at depths of 25 to 37 km
or greater. Work on similar rocks of the same age (J. L.
Anderson and Cullers, 1978; Cullers and others, 1981;
Condie, 1978) has shown that the REE composition is
likewise compatible with a crustal source, one of quartz
dioritic to granodioritic composition, either metaplutonic
or metavolcanic, with a variable proportion of
metasedimentary component. The latter is particularly
relevant for the more peraluminous granites of central and
southeastern Arizona,

There is not a lot of initial Sr isotope data for these rocks
(table 13, but they show general conformity with that for the
rest of the transcontinental belt (J. L. Anderson, 1983),
which has an average initial Sr isotopic ratio of
(.7051£.0025(10). The indication is a source neither very
radiogenic nor too old. This conclusion has recently been

J. L. Anderson

confirmed by the Nd-Sm studies of Bennett and DePaclo
(1984), who concluded a crustal source for several granites
in the vicinity of the Colorado River (including the Parker
Dam, Hualapai, Davis Dam, and Gold Butte granites) and
for others in central and southeastern Arizona. Likewise,
Nelson and DePaolo (1985) and Farmer and DePaolo
(1984) have studied the Marble, Oracle, Dells, and Lawler
Peak granites with similar conclusions. For most of these
plutons, the eng values are strongly negative and indicate a
crustal source, largely, if not exclusively, Proterozoic, which
formed from the mantle some 250 to 400 Ma earlier.

The physical state of an anorogenic crustal source has
attracted differing forms of speculation. To account for the
relatively dry nature of anorogeni¢ granites, Chappell
{1979), Loiselle and Wones {1979), and Collins and others
{1982) suggested that the source be a residue from an earlier
melting episode (hence, their R-type granite). However,
such a refractory source would be depleted in silica and
fluorine, as well as water and many incompatible elements,
Moreover, Bennett {1984, personal commaun.), has
suggested that her Nd-Sm data preclude the R-type origin.
A high-grade metaigneous to metasedimentary source,
stripped of most of its available water during preceding
orogenic metamorphism, is consistent. with a range of
isotopic and geochemical data. For example, a tonalitic
metaigneous source has a water budget far less than one
percent, part of which will be retained during melting. An
additional attribute of this type of source is that the degree
of melting will be limited, a consequence of the large AT for
the solidus and liquidus of a relatively dry crustal source
and the ultimate cause of the potassic and iron- and
fluorine-rich nature of these granites.

This general model for the granitic magmas of the
transcontinental belt must be, of course, tempered for
intrabelt regional variations. The peraluminous segment
from Colorado to central and southeastern Arizona
exhibits some differences additional to higher A-CNK
ratios. The most straightforward explanation is that the
increased contribution of a metasedimentary component
will provide a higher water budget, which leads to large
degrees of partial melting. Qualitatively, this will difute the
concentration of atkalies, fluorine, and most LIL elements
and lower the Fe-Mg ratio.

MAGMATIC AND METAMORPHIC VARIATIONS
OF THE HOST TERRANES

The most apparent mineralogic variation of the 1.4-Ga
granites is the biotite & hornblende to biotite -+ muscovite
transition that presumably results {rom a physical change
in the crustal source. The transition boundary, still subject
to revision, is, on its western extent, proximal to dramatic
change in the estimated levels of oxygen fugacity of the
magmas and presumably their source.

There are three other indications that the western
transition boundary is even more fundamental. For one, it
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PROTEROZOIC REGIONAL
METAMORPHISM

Figuf.e l'I. Early Proterozoic metamorphic terranes of the southwestern United States. This compilation, stili imprecise, draws from the
description gf several workers, including Ransome (1903}, C. A, Anderson and others (1955), Krieger (1965), Volborth (1962, 1973), Podruski
(197:9), Davis ;Imd others (1980), Therpe (1980), Couch {1981), Sommer (1982), and Thomas and others {in press). The heavy dash-dot lines
depict approximate changes in metamorphic grade but are not isograds as the age of the metamorphism ranges in age from about 1.75 Ga
(west) to 1.65 Ga (east) (Silver, 1968). The light dash and dotted curve represents the change of granite type at 1.4 Ga. Areas affected by

major Mesozoic and Tertiary metamorphism have been omitted.

is closely coincident to a major change in metamorphic
grade of the host lithologic units. The regional variations in
metamorphic grade are shown in figure 11; however, the
data are imprecise and this compilation mist be viewed as
preliminary. The metamorphism is of variable age, and
contact effects due to later Proterozoic granitic intrusion
have yet to be well documented. For many areas, the grade
of metamorphism has simply not been studied and will be
a difficult task where there is a strong overprint of Mesozoic
to Tertiary plutonism and deformation. However, the
general trends clearly indicate that the older host rocks to
the east are of lower metamorphic grade, including the

greenschist-grade Pinal Schist and the upper greenschist- to
low- and medium-amphibolite-grade Yavapai Series. To
the west, the older units are all high-grade quartz
feldspathic gneisses, with peak metamorphism at upper
amphibolite grade (K-feldspar sillimanite zone) in western
Arizona and adjacent California increasing northward to
low granulite grade in southern Nevada (Thomas and
others, in press).

A second change deals with the compositional nature of
the older foliated granitoids. Those in the lower grade
metamorphic terranes in central Arizona are typically calc-
alkaline, although a few, usually late to postkinematic, are
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potassic. Rock types include the range from quartz diorite
to granodiorite. In contrast, the calc-alkaline granitoids
appear to be insignificant in number, if not absent, in the
high-grade metamorphic region to the west. Some plutons
have U-Pb {zircon) ages as old as 1.74 Ga (J, L. Anderson
and J. Wright, in prep.) yet are potassic and, in fact, similar
in many respects to the 1.4-Ga-old anorogenic suite.

Thirdly, the western transition boundary is strikingly
similar to the crust formation province boundary of
Bennett and DePaolo (1984). Based on Nd model ages of
1.4-Ga and older granites, their boundary separates an
eastern province having Tom ages of 1. 7to 1.8 Gafrom a
western province with Tom ages of 1.8 to 2.0 Ga, Further
to the west, a third province having Towm of 2.0 to 2.3 Ga
resides in southeastern California. Bennett and DePaolo
noted that these provinces may delineate either aging of, or
an increased Archean component in, the lower crust, from
which these 1.4-Ga-old granites were derived. Clearly, these
variations in Nd isotopic signature are coincident with
fundamental changes in granite type and the preceding
thermal history of the crust.

TECTONIC SIGNIFICANCE

The origin of the transcontinental anorogenic belt
remains as one of the more enigmatic plutonic episodes of
the Proierozoic North American craton. The amount of
crustal readjustment during its 80-Ma history of formation
is certainly profound. If the southwestern United States is
typical, 15 to 40 percent of the exposed upper Proterozoic
crust formed at this time. The main form of strain affecting
the upper crust during this period was simply that due to
accommodation to the rise of these batholith-sized magma
bodies.

Anorogenic or Simply Epizonal

Anorogenic implies the lack of any relation to orogeny.
The term has all of the failings of any genetic classification
and should be used in caution where knowledge of the
complete deformation history of the crust is precluded by
lack of exposure depth. Even in orogenic settings, the drier
magmas will have the capacity to rise far from any disturbed
regions and, depending on the nature of magma generation
and source, may have the standard compositional and
physical attributes of anorogenic magmatism. This
Proterozoic case has a continent-wide expression with
significant variations in ¢xposed crustal levels. Thus, the
characterization as anorogenic seems valid, as nowhere in
the transcontinental province has Proterozoic orogenic
deformation and metamorphism younger than 1.65 Ga
been recognized. The exotic San Gabriel terrane (Silver,
1982) of southwestern California reportedly contains
granulite gneisses of 1.4-Ga age, but whether this thermal
event is orogenic in origin or represents heating in response
to an anorogenic episode (assuming that the terrane has ties
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to the North American Proterozoic craton) has not been
documented.

A Crustal Overturn Model .

There is considerable debate regarding the origin of the
anorogenic transcontinental belt, and recent models include
(1) mantle diapirism in an extensional regime (J. L.
Anderson and Cullers, 1978; Emslie, 1978}, (2) heating in
response to tectonic crustal thickening by the preceding
orogenic episodes (Bickford and others, 1981; Van Schmus
and Bickford, 1981), and (3) an early inland manifestation
of the Grenville Orogeny {Nelson and DePaolo, 1985).

Each of these models has some obvious failings. With
regard t0 model 1, no tectonic expression of 1.4- to 1.5-Ga
extension has been recognized within the continent. For
model 2, it should be noted that the transcontinental
anorogenic belt cuis across all three of the orogenic
provinces designated in figure 1 and did not begin to form
until orogenic activity had ceased for 17¢ to 350 Ma. Model
3 is based on a Nd-Sm analysis of a Llano (Texas) batholith
with a 1.1-b.y. crystallization and a 1.35-b.y. crust-
formation age. Although the latter may indicate that the
crustal source for the Llano granite separated from the
mantle 1.35 Ga ago, it could also represent a mixture of
source age, including Grenvillian and something much
older, such as 1.7 to L. 9 b.y. -

The most serious failing of all of these models is a
presumption of a Phanerozoic tectonic analogue. There is
no doubt that the Proterozoic has many similarities to the
Phanerczoic, yet there are major differences—the episodic
nature of the Proterozoic orogenies on a worldwide basis
{Condie, 1982, p. 96-97) and the high rate of continental
growth during these orogenic periods of erust formation:
Figure 1 depicts the relative proportions of Archean and
Proterozoic crust of North American craton. The early
Proterozoic orogenics (1.95 to 1.65 Ga) created an
enormous amount of new continental crust. The preceding
and succeeding periods, 2.6 to 1.95 Ga and 1.65 to 1.1 Ga,
respectively, were a time of worldwide tectonic quiescence
for which there is no Phanerozoic anologue, The cause of
this quiescence is uncertain, One implication is that the rate
of plate consumption dramatically slowed. A more
reasonable explanation is that plate consumption became
intraoceanic, which is probable if Piper’s (1985) model for
a Proterozoic supercontinent remains valid,

The model presented here assumes that this new crust
was vertically undifferentiated (i.e., no Conrad Discontinuity)
with a potential low-melting fraction that would be
susceptible to partial fusion and melt segregation pending
arrival of a thermal perturbation. This new crust also rested
on a mantle that, now isolated from suboceanic processes,
would be less depleted of its own low-melting fraction, as
is the case for some portions of the modern-day subcontinental
mantle (DePaolo and Wasserburg, 1976). Eventual heating
and diapiric rise of a destabilized but solid mantle plume
could lead, depending on the P-T path, to the formation of
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large gabbroic magma chambers that would, in absence of
continental rifting, underplate or intrude the lower crust.
Building on the model of Barker and others (1975), the
resultant thermal upwelling, with or without mantle
melting, would induce a profound disturbance in the lower
crust leading to formation and separation of potassic
granitic magma. This process would continue until both the
mantle and relatively young Proterozoic crust reached a
stable tonfiguration. The eventual result is that the mantle
would be free of its deeper, thermally unstable component
and the crust would be differentiated into lower mafic crust
of residual composition and an upper felsic crust derived
from intrusion and extrusion of these granitic magmas. The
model explains several features of the Proterozoic
anorogenic event: (1} the association but not ubiquitous
occurrence of anorthosite with the granites of this age; (2)
many Proterozoic anorthosites and diabase dikes have only
mildly depleted to near chondritic exa values {DePaolo and
Wasserburg, 1976; Ashwal and others, 1985); (3) the entire
province is contained within older Proterozoic orogenic
crust; and (4) this staggering amount of anorogenic upper
crustal intrusion on a continent-wide basis has no
Phanerozoic equivalent.

SUMMARY

Representing a portion of the 1.4-to 1.5-Ga transcontinental
belt, numerous anorogenic potassic granites occur in the
Proterozoic exposures of Arizona, southern Nevada, and
southeastern California, all having ages between 1.40 and
1.45 Ga. Their mineralogy and petrologic nature lead to the
following conclusions.

(1) As implied for their usual K-feldspar megacrystic
character, the granites are more potassic, have higher
Fe-Fet+Mg ratios, and are lower in Mg, Ca, Na, and Sr
than most of the older, orogenic granitoids that form
parts of the host terranes.

(2) All belong to an anorogenic magnetite series, but
significant variations exist in their hydrous and
accessory mineralogy. A peraluminous biotite to two-
mica suite, which generally contains monazite but lacks
fluorite, resides in central to southeastern Arizona. A
metalominous to marginally peraluminous suite of
biotite + sphene & hornblende = fluorite occurs from
southern Arizona to California and north along the
Colorado River to southern Nevada. The boundary
between these two contrasting granitic suites, at least on
its western extent, coincides with a major change in the
preceding metamorphic and magmatic history of the
host terrane.

(3) Theabove regional variation must reflect compositional
and mineralogical changes of a lower crustal source
(=25 to 37 km). The preferred composition is a cale-
alkaline metaigneous source with significant contribution
of a metasedimentary component for the more
peraluminous segment. Recent Nd-Sm studies show the
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source to be Proterozoic in age with a residence period
ranging from 250 to 400 Ma.

(4) The potassic and LILE-enriched composition of the
granites is a result of limited melting due to a lower
water content of the source, However, this enrichment
is less elevated for granites hosted in the more youthful
orogenic terrane of southeastern Arizona, a probable
consequence of greater melting of a source that was less
dry and had a larger metasedimentary component.

(5) Dueto low water fugacities (lower for the metaluminous
granites), the plutons intruded into the upper crust at
depths of 8 to 17 km or shallower, Feldspar thermometry
yvields an estimated temperature range of 620-790°C.,

(6) Directly indicative of regional variations of the oxidized
state of the source, the granites crystallized at elevated
oxygen fugacitics spanning three orders of magnitude.
The most elevated oxygen levels were recorded for the
Hualapai Mountains, where biotite Fe/Fe+Mg drops
to alow of 0.27, down from typical levels of 0.54 t0 0.75,

This anorogenic magmatism of the southwest is

representative not only of a transcontinental but a global
event unique to the Middle Proterozoic era, It followed an
equally unique Early Proterozoic time of unusually rapid
crust formation and perhaps assembly of a supercontinent,
A probable scenario is that the juvenile crust, largely
undifferentiated, was susceptible to partial melting in
response to heating and rise of thermal plumes originating
in the undepleted and heating subcontinental mantle, The
ensuing turnover led to considerable transfer of material
from the lower to the upper crust in a process not unlike
that occurring in the underlying mantle. The eventual result
was lithospheric stabilization,
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